Keywords: Banach spaces; compact operator; asymptotic isometric copy of $\ell _1$
@article{CMJ_2009_59_4_a1,
author = {Azimi, Parviz and Khodabakhshian, H.},
title = {Further properties of {Azimi-Hagler} {Banach} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {871--878},
year = {2009},
volume = {59},
number = {4},
mrnumber = {2563564},
zbl = {1218.47134},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a1/}
}
Azimi, Parviz; Khodabakhshian, H. Further properties of Azimi-Hagler Banach spaces. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 871-878. http://geodesic.mathdoc.fr/item/CMJ_2009_59_4_a1/
[1] Azimi, P.: A new class of Banach sequence spaces. Bull. Iran. Math. Soc. 28 (2002), 57-68. | MR | Zbl
[2] Azimi, P.: On geometric and topological properties of the classes of hereditarily $\ell_p$ Banach spaces. Taiwanese J. Math. 10 (2006), 713-722. | DOI | MR | Zbl
[3] Azimi, P., Hagler, J.: Example of hereditarily $\ell_p$ Banach spaces failing the Schur property. Pac. J. Math. 122 (1987), 287-297. | DOI | MR
[4] Chen, D.: Asymptotically isometric copy of $c_0$ and $\ell_1$ in certain Banach spaces. J. Math. Anal. Appl. 284 (2003), 618-625. | DOI | MR
[5] Chen, S., Lin, B. L.: Dual action of asymptotically isometric copies of $\ell_p$ $(1\leq p<\infty)$ and $c_0$. Collect. Math. 48 (1997), 449-458. | MR | Zbl
[6] Diestel, J.: Sequence and Series in Banach Spaces. Springer New York (1983). | MR
[7] Dowling, P. N.: Isometric copies of $c_0$ and $\ell_{\infty}$ in duals of Banach spaces. J. Math. Anal. Appl. 244 (2000), 223-227. | DOI | MR | Zbl
[8] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. I. Sequence Spaces. Springer Berlin (1977). | MR | Zbl
[9] Morrison, T. J.: Functional Analysis: An Introduction to Banach Space Theory. John Wiley & Sons (2001). | MR | Zbl
[10] Pelczynski, A.: Projections in certain Banach spaces. Stud. Math. 19 (1960), 209-228. | DOI | MR | Zbl
[11] Popov, M. M.: More examples of hereditarily $\ell_p$ Banach spaces. Ukrainian Math. Bull. 2 (2005), 95-111. | MR | Zbl