On the distributive radical of an Archimedean lattice-ordered group
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 687-693 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be an Archimedean $\ell $-group. We denote by $G^d$ and $R_D(G)$ the divisible hull of $G$ and the distributive radical of $G$, respectively. In the present note we prove the relation $(R_D(G))^d=R_D(G^d)$. As an application, we show that if $G$ is Archimedean, then it is completely distributive if and only if it can be regularly embedded into a completely distributive vector lattice.
Let $G$ be an Archimedean $\ell $-group. We denote by $G^d$ and $R_D(G)$ the divisible hull of $G$ and the distributive radical of $G$, respectively. In the present note we prove the relation $(R_D(G))^d=R_D(G^d)$. As an application, we show that if $G$ is Archimedean, then it is completely distributive if and only if it can be regularly embedded into a completely distributive vector lattice.
Classification : 06F20, 46A40
Keywords: Archimedean $\ell $-group; divisible hull; distributive radical; complete distributivity
@article{CMJ_2009_59_3_a9,
     author = {Jakub{\'\i}k, J\'an},
     title = {On the distributive radical of an {Archimedean} lattice-ordered group},
     journal = {Czechoslovak Mathematical Journal},
     pages = {687--693},
     year = {2009},
     volume = {59},
     number = {3},
     mrnumber = {2545649},
     zbl = {1224.06033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a9/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - On the distributive radical of an Archimedean lattice-ordered group
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 687
EP  - 693
VL  - 59
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a9/
LA  - en
ID  - CMJ_2009_59_3_a9
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T On the distributive radical of an Archimedean lattice-ordered group
%J Czechoslovak Mathematical Journal
%D 2009
%P 687-693
%V 59
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a9/
%G en
%F CMJ_2009_59_3_a9
Jakubík, Ján. On the distributive radical of an Archimedean lattice-ordered group. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 687-693. http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a9/

[1] Birkhoff, G.: Lattice Theory. Revised Edition Providence (1948). | MR | Zbl

[2] Byrd, R. D., Lloyd, J. T.: Closed subgroups and complete distributivity in lattice-ordered groups. Math. Z. 101 (1967), 123-130. | DOI | MR | Zbl

[3] Darnel, M. R.: Theory of Lattice-Ordered Groups. M. Dekker, Inc. New York-Basel- Hong Kong (1995). | MR | Zbl

[4] Jakubík, J.: Representation and extension of $\ell$-groups. Czech. Math. J. 13 (1963), 267-283 Russian. | MR

[5] Jakubík, J.: Distributivity in lattice ordered groups. Czech. Math. J. 22 (1972), 108-125. | MR

[6] Jakubík, J.: Complete distributivity of lattice ordered groups and of vector lattices. Czech. Math. J. 51 (2001), 889-896. | DOI | MR

[7] Lapellere, M. A., Valente, A.: Embedding of Archimedean $\ell$-groups in Riesz spaces. Atti Sem. Mat. Fis. Univ. Modena 46 (1998), 249-254. | MR

[8] Sikorski, R.: Boolean Algebras. Second Edition Springer Verlag Berlin (1964). | MR | Zbl