A chart preserving the normal vector and extensions of normal derivatives in weighted function spaces
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 637-648 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Given a domain $\Omega $ of class $C^{k,1}$, $k\in \Bbb N $, we construct a chart that maps normals to the boundary of the half space to normals to the boundary of $\Omega $ in the sense that $(\partial- {\partial x_n})\alpha (x',0)= - N(x')$ and that still is of class $C^{k,1}$. As an application we prove the existence of a continuous extension operator for all normal derivatives of order 0 to $k$ on domains of class $C^{k,1}$. The construction of this operator is performed in weighted function spaces where the weight function is taken from the class of Muckenhoupt weights.
Given a domain $\Omega $ of class $C^{k,1}$, $k\in \Bbb N $, we construct a chart that maps normals to the boundary of the half space to normals to the boundary of $\Omega $ in the sense that $(\partial- {\partial x_n})\alpha (x',0)= - N(x')$ and that still is of class $C^{k,1}$. As an application we prove the existence of a continuous extension operator for all normal derivatives of order 0 to $k$ on domains of class $C^{k,1}$. The construction of this operator is performed in weighted function spaces where the weight function is taken from the class of Muckenhoupt weights.
Classification : 35A25, 35A99, 46E35, 46N20, 47A20
Keywords: chart; coordinate transformation; normal vector; normal derivative; extension theorem; Muckenhoupt weight
@article{CMJ_2009_59_3_a6,
     author = {Schumacher, Katrin},
     title = {A chart preserving the normal vector and extensions of normal derivatives in weighted function spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {637--648},
     year = {2009},
     volume = {59},
     number = {3},
     mrnumber = {2545646},
     zbl = {1218.47019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a6/}
}
TY  - JOUR
AU  - Schumacher, Katrin
TI  - A chart preserving the normal vector and extensions of normal derivatives in weighted function spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 637
EP  - 648
VL  - 59
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a6/
LA  - en
ID  - CMJ_2009_59_3_a6
ER  - 
%0 Journal Article
%A Schumacher, Katrin
%T A chart preserving the normal vector and extensions of normal derivatives in weighted function spaces
%J Czechoslovak Mathematical Journal
%D 2009
%P 637-648
%V 59
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a6/
%G en
%F CMJ_2009_59_3_a6
Schumacher, Katrin. A chart preserving the normal vector and extensions of normal derivatives in weighted function spaces. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 637-648. http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a6/

[1] Abels, H.: Reduced and generalized Stokes resolvent equations in asymptotically flat layers. {II}: $H_\infty$-calculus. J. Math. Fluid Mech. 7 223-260 (2005). | DOI | MR | Zbl

[2] Chua, S.-K.: Extension theorems on weighted Sobolev spaces. Indiana Univ. Math. J. 41 1027-1076 (1992). | DOI | MR | Zbl

[3] Curbera, G. P., García-Cuerva, J., Martell, J. M., Pérez, C.: Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals. Adv. Math. 203 256-318 (2006). | DOI | MR

[4] Evans, L. C.: Partial Differential Equations. American Mathematical Society, Providence (1998). | MR | Zbl

[5] Farwig, R., Galdi, G. P., Sohr, H.: Very weak solutions of stationary and instationary Navier-Stokes equations with nonhomogeneous data. Nonlinear Elliptic and Parabolic Problems, Progr. Nonlinear Differential Equations Appl., Birkhäuser 64 113-136 (2005). | DOI | MR

[6] Farwig, R., Sohr, H.: Weighted {$L^q$}-theory for the Stokes resolvent in exterior domains. J. Math. Soc. Japan 49 251-288 (1997). | DOI | MR

[7] Fröhlich, A.: Stokes- und Navier-Stokes-Gleichungen in gewichteten Funktionenr�umen. Shaker Verlag, Aachen (2001).

[8] Fröhlich, A.: The Stokes operator in weighted {$L^q$}-spaces I: Weighted estimates for the Stokes resolvent problem in a half space. J. Math. Fluid Mech. 5 166-199 (2003). | DOI | MR

[9] Fröhlich, A.: The Stokes operator in weighted {$L^q$}-spaces {II}: Weighted resolvent estimates and maximal {$L^p$}-regularity. Math. Ann. 339 287-316 (2007). | DOI | MR

[10] Galdi, G. P., Simader, C. G., Sohr, H.: A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in $W^{-\frac1q,q}$. Math. Ann. 331 41-74 (2005). | DOI | MR | Zbl

[11] García-Cuerva, J., Francia, J. L. Rubio de: Weighted norm inequalities and related topics. North Holland, Amsterdam (1985). | MR

[12] Giga, Y.: Analyticity of the semigroup generated by the Stokes operator in $L_r$-spaces. Math. Z. 178 297-329 (1981). | DOI | MR | Zbl

[13] Nečas, J.: Les Méthodes Directes en Théorie des Équations Elliptiques. Academia, Prague (1967). | MR

[14] Schumacher, K.: Very weak solutions to the stationary Stokes and Stokes resolvent problem in weighted function spaces. Ann. dell'Univ. di Ferrara 54 123-144 (2008). | DOI | MR | Zbl

[15] Slobodeckiǐ, L. N.: Generalized Sobolev spaces and their application to boundary problems for partial differential equations. Leningrad. Gos. Ped. Inst. Učen. Zap. 197 54-112 (1958). | MR

[16] Stein, E.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series. 43, Princeton University Press, Princeton, N.J. (1993). | MR | Zbl