Keywords: chart; coordinate transformation; normal vector; normal derivative; extension theorem; Muckenhoupt weight
@article{CMJ_2009_59_3_a6,
author = {Schumacher, Katrin},
title = {A chart preserving the normal vector and extensions of normal derivatives in weighted function spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {637--648},
year = {2009},
volume = {59},
number = {3},
mrnumber = {2545646},
zbl = {1218.47019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a6/}
}
TY - JOUR AU - Schumacher, Katrin TI - A chart preserving the normal vector and extensions of normal derivatives in weighted function spaces JO - Czechoslovak Mathematical Journal PY - 2009 SP - 637 EP - 648 VL - 59 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a6/ LA - en ID - CMJ_2009_59_3_a6 ER -
Schumacher, Katrin. A chart preserving the normal vector and extensions of normal derivatives in weighted function spaces. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 637-648. http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a6/
[1] Abels, H.: Reduced and generalized Stokes resolvent equations in asymptotically flat layers. {II}: $H_\infty$-calculus. J. Math. Fluid Mech. 7 223-260 (2005). | DOI | MR | Zbl
[2] Chua, S.-K.: Extension theorems on weighted Sobolev spaces. Indiana Univ. Math. J. 41 1027-1076 (1992). | DOI | MR | Zbl
[3] Curbera, G. P., García-Cuerva, J., Martell, J. M., Pérez, C.: Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals. Adv. Math. 203 256-318 (2006). | DOI | MR
[4] Evans, L. C.: Partial Differential Equations. American Mathematical Society, Providence (1998). | MR | Zbl
[5] Farwig, R., Galdi, G. P., Sohr, H.: Very weak solutions of stationary and instationary Navier-Stokes equations with nonhomogeneous data. Nonlinear Elliptic and Parabolic Problems, Progr. Nonlinear Differential Equations Appl., Birkhäuser 64 113-136 (2005). | DOI | MR
[6] Farwig, R., Sohr, H.: Weighted {$L^q$}-theory for the Stokes resolvent in exterior domains. J. Math. Soc. Japan 49 251-288 (1997). | DOI | MR
[7] Fröhlich, A.: Stokes- und Navier-Stokes-Gleichungen in gewichteten Funktionenr�umen. Shaker Verlag, Aachen (2001).
[8] Fröhlich, A.: The Stokes operator in weighted {$L^q$}-spaces I: Weighted estimates for the Stokes resolvent problem in a half space. J. Math. Fluid Mech. 5 166-199 (2003). | DOI | MR
[9] Fröhlich, A.: The Stokes operator in weighted {$L^q$}-spaces {II}: Weighted resolvent estimates and maximal {$L^p$}-regularity. Math. Ann. 339 287-316 (2007). | DOI | MR
[10] Galdi, G. P., Simader, C. G., Sohr, H.: A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in $W^{-\frac1q,q}$. Math. Ann. 331 41-74 (2005). | DOI | MR | Zbl
[11] García-Cuerva, J., Francia, J. L. Rubio de: Weighted norm inequalities and related topics. North Holland, Amsterdam (1985). | MR
[12] Giga, Y.: Analyticity of the semigroup generated by the Stokes operator in $L_r$-spaces. Math. Z. 178 297-329 (1981). | DOI | MR | Zbl
[13] Nečas, J.: Les Méthodes Directes en Théorie des Équations Elliptiques. Academia, Prague (1967). | MR
[14] Schumacher, K.: Very weak solutions to the stationary Stokes and Stokes resolvent problem in weighted function spaces. Ann. dell'Univ. di Ferrara 54 123-144 (2008). | DOI | MR | Zbl
[15] Slobodeckiǐ, L. N.: Generalized Sobolev spaces and their application to boundary problems for partial differential equations. Leningrad. Gos. Ped. Inst. Učen. Zap. 197 54-112 (1958). | MR
[16] Stein, E.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series. 43, Princeton University Press, Princeton, N.J. (1993). | MR | Zbl