Keywords: eavesdropping number; edge connectivity; maximally locally connected; cartesian product; vertex disjoint paths
@article{CMJ_2009_59_3_a5,
author = {Stuart, Jeffrey L.},
title = {The eavesdropping number of a graph},
journal = {Czechoslovak Mathematical Journal},
pages = {623--636},
year = {2009},
volume = {59},
number = {3},
mrnumber = {2545645},
zbl = {1224.05273},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a5/}
}
Stuart, Jeffrey L. The eavesdropping number of a graph. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 623-636. http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a5/
[1] Cai, C.: The maximal size of graphs with at most $k$ edge-disjoint paths connecting any two adjacent vertices. Discrete Math. 85 (1990), 43-52. | DOI | MR | Zbl
[2] Chartrand, G., Harary, F.: Graphs with prescribed connectivities. Theory of Graphs, Proc. Colloq., Tihany, Hungary, 1966 Académiai Kiadói Budapest (1968), 61-63. | MR | Zbl
[3] Chartrand, G., Oellermann, O. R.: Applied and Algorithmic Graph Theory. McGraw-Hill New York (1993). | MR
[4] Fricke, G., Oellermann, O. R., Swart, H. C.: The edge-connectivity, average edge-connectivity and degree conditions. Manuscript (2000).
[5] Hellwig, A.: Maximally connected graphs and digraphs. Doctoral dissertation Rheinisch-Westfälishchen Technische Hochschule Aachen (2005).
[6] Hellwig, A., Volkmann, L.: Maximally local-edge-connected graphs and digraphs. Ars. Comb. 72 (2004), 295-306. | MR | Zbl
[7] Huck, A., Okamura, H.: Counterexamples to a conjecture of Mader about cycles through specified vertices in $n$-edge-connected graphs. Graphs Comb. 8 (1992), 253-258. | DOI | MR | Zbl
[8] Mader, W.: Existenz gewisser Konfigurationen in $n$-gesättigten Graphen und in Graphen genügend grosser Kantendichte. Math. Ann. 194 (1971), 295-312 German. | DOI | MR | Zbl
[9] Whitney, H.: Congruent graphs and the connectivity of graphs. Am. J. Math. 54 (1932), 150-168. | DOI | MR | Zbl
[10] Xu, J.-M., Yang, C.: Connectivity of Cartesian product graphs. Discrete Math. 306 (2006), 159-165. | DOI | MR | Zbl