On strongly $(P)$-cyclic acts
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 595-611 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

By a regular act we mean an act such that all its cyclic subacts are projective. In this paper we introduce strong $(P)$-cyclic property of acts over monoids which is an extension of regularity and give a classification of monoids by this property of their right (Rees factor) acts.
By a regular act we mean an act such that all its cyclic subacts are projective. In this paper we introduce strong $(P)$-cyclic property of acts over monoids which is an extension of regularity and give a classification of monoids by this property of their right (Rees factor) acts.
Classification : 20M30
Keywords: strongly $(P)$-cyclic; right $PCP$; Rees factor act
@article{CMJ_2009_59_3_a3,
     author = {Golchin, Akbar and Rezaei, Parisa and Mohammadzadeh, Hossein},
     title = {On strongly $(P)$-cyclic acts},
     journal = {Czechoslovak Mathematical Journal},
     pages = {595--611},
     year = {2009},
     volume = {59},
     number = {3},
     mrnumber = {2545643},
     zbl = {1207.20062},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a3/}
}
TY  - JOUR
AU  - Golchin, Akbar
AU  - Rezaei, Parisa
AU  - Mohammadzadeh, Hossein
TI  - On strongly $(P)$-cyclic acts
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 595
EP  - 611
VL  - 59
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a3/
LA  - en
ID  - CMJ_2009_59_3_a3
ER  - 
%0 Journal Article
%A Golchin, Akbar
%A Rezaei, Parisa
%A Mohammadzadeh, Hossein
%T On strongly $(P)$-cyclic acts
%J Czechoslovak Mathematical Journal
%D 2009
%P 595-611
%V 59
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a3/
%G en
%F CMJ_2009_59_3_a3
Golchin, Akbar; Rezaei, Parisa; Mohammadzadeh, Hossein. On strongly $(P)$-cyclic acts. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 595-611. http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a3/

[1] Howie, J. M.: Fundamentals of Semigroup Theory. London Mathematical Society Monographs, OUP (1995). | MR | Zbl

[2] Kilp, M.: Characterization of monoids by properties of their left Rees factors. Tartu Ül. Toimetised 640 (1983), 29-37. | MR

[3] Kilp, M., Knauer, U., Mikhalev, A.: Monoids, Acts and Categories: With Applications to Wreath Products and Graphs: A Handbook for Students and Researchers. Walter de Gruyter, Berlin (2000). | MR | Zbl

[4] Laan, V.: Pullbacks and flatness properties of acts. PhD Thesis, Tartu (1999). | MR | Zbl

[5] Laan, V.: Pullbacks and flatness properties of acts I. Comm. Algebra 29 (2001), 829-850. | DOI | MR | Zbl

[6] Normak, P.: Analogies of QF-ring for monoids. I. Tartu Ül. Toimetised 556 (1981), 38-46. | MR

[7] Tran, L. H.: Characterizations of monoids by regular acts. Period. Math. Hung. 16 (1985), 273-279. | DOI | MR