Evaluation of the sums $\sum\limits_{\substack{m=1 \\ m\equiv a\pmod 4}}^{n-1} \sigma (m) \sigma (n-m) $
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 847-859 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The convolution sum $$ \sum\limits_{\substack{m=1 \\ m\equiv a\pmod 4}}^{n-1} \sigma (m) \sigma (n-m) $$ is evaluated for $a\in \{ 0,1,2,3\}$ and all $n \in \Bbb N$. This completes the partial evaluation given in the paper of J. G. Huard, Z. M. Ou, B. K. Spearman, K. S. Williams.
The convolution sum $$ \sum\limits_{\substack{m=1 \\ m\equiv a\pmod 4}}^{n-1} \sigma (m) \sigma (n-m) $$ is evaluated for $a\in \{ 0,1,2,3\}$ and all $n \in \Bbb N$. This completes the partial evaluation given in the paper of J. G. Huard, Z. M. Ou, B. K. Spearman, K. S. Williams.
Classification : 11A25, 11F27
Keywords: convolution sums; sum of divisors function; theta functions
@article{CMJ_2009_59_3_a20,
     author = {Alaca, Ay\c{s}e and Alaca, \c{S}aban and Williams, Kenneth S.},
     title = {Evaluation of the sums $\sum\limits_{\substack{m=1 \\ m\equiv a\pmod 4}}^{n-1} \sigma (m) \sigma (n-m) $},
     journal = {Czechoslovak Mathematical Journal},
     pages = {847--859},
     year = {2009},
     volume = {59},
     number = {3},
     mrnumber = {2545660},
     zbl = {1204.11009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a20/}
}
TY  - JOUR
AU  - Alaca, Ayşe
AU  - Alaca, Şaban
AU  - Williams, Kenneth S.
TI  - Evaluation of the sums $\sum\limits_{\substack{m=1 \\ m\equiv a\pmod 4}}^{n-1} \sigma (m) \sigma (n-m) $
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 847
EP  - 859
VL  - 59
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a20/
LA  - en
ID  - CMJ_2009_59_3_a20
ER  - 
%0 Journal Article
%A Alaca, Ayşe
%A Alaca, Şaban
%A Williams, Kenneth S.
%T Evaluation of the sums $\sum\limits_{\substack{m=1 \\ m\equiv a\pmod 4}}^{n-1} \sigma (m) \sigma (n-m) $
%J Czechoslovak Mathematical Journal
%D 2009
%P 847-859
%V 59
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a20/
%G en
%F CMJ_2009_59_3_a20
Alaca, Ayşe; Alaca, Şaban; Williams, Kenneth S. Evaluation of the sums $\sum\limits_{\substack{m=1 \\ m\equiv a\pmod 4}}^{n-1} \sigma (m) \sigma (n-m) $. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 847-859. http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a20/

[1] Alaca, A., Alaca, S., Williams, K. S.: Seven octonary quadratic form. Acta Arith. 135 (2008), 339-350. | DOI | MR

[2] Berndt, B. C.: Number Theory in the Spirit of Ramanujan. American Mathematical Society (AMS) Providence (2006). | MR | Zbl

[3] Cheng, N.: Convolution sums involving divisor functions. M.Sc. thesis Carleton University Ottawa (2003).

[4] Cheng, N., Williams, K. S.: Convolution sums involving the divisor function. Proc. Edinb. Math. Soc. 47 (2004), 561-572. | DOI | MR | Zbl

[5] Huard, J. G., Ou, Z. M., Spearman, B. K., Williams, K. S.: Elementary evaluation of certain convolution sums involving divisor functions. Number Theory for the Millenium II (Urbana, IL, 2000) A. K. Peters Natick (2002), 229-274. | MR | Zbl

[6] Williams, K. S.: The convolution sum $\sum_{m< n/8} \sigma(m) \sigma(n-8m)$. Pac. J. Math. 228 (2006), 387-396. | MR | Zbl