Orbit projections of proper Lie groupoids as fibrations
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 591-594
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $\mathcal{G} \rightrightarrows M$ be a source locally trivial proper Lie groupoid such that each orbit is of finite type. The orbit projection $M \to M/\mathcal{G}$ is a fibration if and only if $\mathcal{G}\rightrightarrows M$ is regular.
Let $\mathcal{G} \rightrightarrows M$ be a source locally trivial proper Lie groupoid such that each orbit is of finite type. The orbit projection $M \to M/\mathcal{G}$ is a fibration if and only if $\mathcal{G}\rightrightarrows M$ is regular.
Classification :
22A22, 55R05, 55R65
Keywords: orbit projection; proper Lie groupoid; fibration
Keywords: orbit projection; proper Lie groupoid; fibration
@article{CMJ_2009_59_3_a2,
author = {Rainer, Armin},
title = {Orbit projections of proper {Lie} groupoids as fibrations},
journal = {Czechoslovak Mathematical Journal},
pages = {591--594},
year = {2009},
volume = {59},
number = {3},
mrnumber = {2545642},
zbl = {1224.22005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a2/}
}
Rainer, Armin. Orbit projections of proper Lie groupoids as fibrations. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 591-594. http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a2/
[1] Dugundji, J.: Topology. Allyn and Bacon, Inc., Boston (1966). | MR | Zbl
[2] Palais, R. S.: On the existence of slices for actions of non-compact Lie groups. Ann. of Math. 73 (1961), 295-323. | DOI | MR | Zbl
[3] Rainer, A.: Orbit projections as fibrations. (to appear) in Czech. Math. J., arXiv: math.DG/0610513. | MR
[4] Weinstein, A.: Linearization of regular proper groupoids. J. Inst. Math. Jussieu 3 (2002), 493-511. | MR | Zbl
[5] Zung, N. T.: Proper groupoids and momentum maps: linearization, affinity, and convexity. Ann. Sci. Éc. Norm. Supér. 39 (2006), 841-869. | DOI | MR