Keywords: monotonically meta-Lindelöf; compact; point-countable; order; linearly ordered extension
@article{CMJ_2009_59_3_a19,
author = {Gao, Yin-Zhu and Shi, Wei-Xue},
title = {Monotone {meta-Lindel\"of} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {835--845},
year = {2009},
volume = {59},
number = {3},
mrnumber = {2545659},
zbl = {1224.54058},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a19/}
}
Gao, Yin-Zhu; Shi, Wei-Xue. Monotone meta-Lindelöf spaces. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 835-845. http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a19/
[1] Burke, D. K.: Covering properties. Handbook of Set-Theoretic Topology K. Kunen, J. E. Vaughan Elsevier Science Publishers (1984), 347-422. | MR | Zbl
[2] Bennett, H. R., Lutzer, D. J.: Continuous separating families in ordered spaces and strong base conditions. Topology Appl. 119 (2002), 305-314. | DOI | MR | Zbl
[3] Bennett, H., Lutzer, D., Matveev, M.: The monotone Lindelöf property and separability in ordered spaces. Topology Appl. 151 (2005), 180-186. | DOI | MR | Zbl
[4] Balogh, Z., Rudin, M. E.: Monotone normality. Topology Appl. 47 (1992), 115-127. | DOI | MR | Zbl
[5] Chaber, J., Coban, M. M., Nagami, K.: On monotonic generalizations of Moore spaces, Čech complete spaces and p-spaces. Fund. Math. 83 (1974), 107-119. | DOI | MR | Zbl
[6] Engelking, R. R.: General Topology. Revised and completed edition. Heldermann Berlin (1989). | MR
[7] Good, C., Knight, R., Stares, I.: Monotone countable paracompactness. Topology Appl. 101 (2000), 281-298. | DOI | MR | Zbl
[8] Halbeisen, L., Hungerbühler, N.: On continuously Urysohn and strongly separating spaces. Topology Appl. 118 (2002), 329-335. | DOI | MR
[9] Heath, R. W., Lutzer, D. J., Zenor, P. L.: Monotonically normal spaces. Trans. Amer. Math. Soc. 178 (1973), 481-493. | DOI | MR | Zbl
[10] Lutzer, D. J.: On generalized Ordered Spaces. Dissertationes Math. Vol. 89. (1971). | MR
[11] Reed, G. M., McIntyre, D. W.: A Moore space with calibre $(\omega_1, \omega)$ but without calibre $\omega_1$. Topology Appl. 44 (1992), 325-329. | DOI | MR
[12] Shi, W.-X., Gao, Y.-Z.: Sorgenfrey line and continuous separating families. Topology Appl. 142 (2004), 89-94. | DOI | MR | Zbl
[13] Steen, L. A., Seebach, J. A.: Counterexamples in Topology. Springer-Verlag New York (1978). | MR | Zbl
[14] Zenor, P.: A class of countably paracompact spaces. Proc. Amer. Math. Soc. 24 (1970), 258-262. | DOI | MR | Zbl