The order $\sigma $-complete vector lattice of AM-compact operators
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 827-834
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We establish necessary and sufficient conditions under which the linear span of positive AM-compact operators (in the sense of Fremlin) from a Banach lattice $E$ into a Banach lattice $F$ is an order $\sigma $-complete vector lattice.
We establish necessary and sufficient conditions under which the linear span of positive AM-compact operators (in the sense of Fremlin) from a Banach lattice $E$ into a Banach lattice $F$ is an order $\sigma $-complete vector lattice.
Classification :
46A40, 46B40, 46B42, 47B07, 47B60
Keywords: AM-compact operator; order continuous norm; discrete vector lattice
Keywords: AM-compact operator; order continuous norm; discrete vector lattice
@article{CMJ_2009_59_3_a18,
author = {Aqzzouz, Belmesnaoui and Nouira, Redouane},
title = {The order $\sigma $-complete vector lattice of {AM-compact} operators},
journal = {Czechoslovak Mathematical Journal},
pages = {827--834},
year = {2009},
volume = {59},
number = {3},
mrnumber = {2545658},
zbl = {1222.47063},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a18/}
}
TY - JOUR AU - Aqzzouz, Belmesnaoui AU - Nouira, Redouane TI - The order $\sigma $-complete vector lattice of AM-compact operators JO - Czechoslovak Mathematical Journal PY - 2009 SP - 827 EP - 834 VL - 59 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a18/ LA - en ID - CMJ_2009_59_3_a18 ER -
Aqzzouz, Belmesnaoui; Nouira, Redouane. The order $\sigma $-complete vector lattice of AM-compact operators. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 827-834. http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a18/