Keywords: nonlinear elliptic system; magnetohydrodynamics; natural interface conditions; nonlinear heat equation; nonlocal radiation boundary conditions
@article{CMJ_2009_59_3_a17,
author = {Druet, Pierre-\'Etienne},
title = {Existence for the stationary {MHD-equations} coupled to heat transfer with nonlocal radiation effects},
journal = {Czechoslovak Mathematical Journal},
pages = {791--825},
year = {2009},
volume = {59},
number = {3},
mrnumber = {2545657},
zbl = {1224.35337},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a17/}
}
TY - JOUR AU - Druet, Pierre-Étienne TI - Existence for the stationary MHD-equations coupled to heat transfer with nonlocal radiation effects JO - Czechoslovak Mathematical Journal PY - 2009 SP - 791 EP - 825 VL - 59 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a17/ LA - en ID - CMJ_2009_59_3_a17 ER -
Druet, Pierre-Étienne. Existence for the stationary MHD-equations coupled to heat transfer with nonlocal radiation effects. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 791-825. http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a17/
[1] Bossavit, A.: Electromagnétisme en vue de la modélisation. Springer, Berlin, Heidelberg, New York (2004). | MR
[2] Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability. Dover Publications Inc., New York (1981).
[3] Duvaut, G., Lions, J.-L.: Inéquations en thermoélasticité et magnétohydrodynamique. Archs ration. Mech. Analysis 46 241-279 (1972). | DOI | MR | Zbl
[4] Druet, P.-E.: Higher integrability of the lorentz force for weak solutions to Maxwell's equations in complex geometries. Preprint 1270 of the Weierstrass Institute for Applied mathematics and Stochastics, Berlin (2007). Available in pdf-format at\hfil http://www.wias-berlin.de/publications/preprints/1270
[5] Druet, P.-E.: Weak solutions to a stationary heat equation with nonlocal radiation boundary condition and right-hand side in $L^p$ ($p\geq1$). Math. Meth. Appl. Sci. 32 135-166 (2008). | DOI | MR
[6] Galdi, G.-P.: An introduction to the mathematical theory of the Navier-Stokes equations. Vol I. Linearized steady problems. Springer, New York (1994). | MR
[7] Gray, Donald D., Giorgini, A.: The validity of the Boussinesq approximation for liquids and gases. Int. J. Heat Mass Transfer 19 545-551 (1976). | DOI | Zbl
[8] Giaquinta, M., Modica, L., Souček, J.: Cartesian Currents in the Calculus of Variations. Vol. I. Cartesian Currents. Springer, Berlin, Heidelberg (1998). | MR
[9] Hansen, O.: The radiosity equation on polyhedral domains. Logos Verlag, Berlin (2002). | Zbl
[10] Kufner, A., John, O., Fučik, S.: Function spaces. Academia Prague, Prague (1977). | MR
[11] Klein, O., Philip, P., Sprekels, J.: Modelling and simulation of sublimation growth in sic bulk single crystals. Interfaces and Free Boundaries 6 295-314 (2004). | DOI | MR
[12] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). | MR | Zbl
[13] Ladyzhenskaja, O. A., Solonnikov, V. A.: Solutions of some non-stationary problems of magnetohydrodynamics for a viscous incompressible fluid. Trudy Mat. Inst. Steklov 59 115-173 (1960), Russian. | MR
[14] Laitinen, M., Tiihonen, T.: Conductive-radiative heat transfer in grey materials. Quart. Appl. Math. 59 737-768 (2001). | DOI | MR
[15] Meir, A. J., Schmidt, P. G.: Variational methods for stationary {MHD} flow under natural interface conditions. Nonlinear Analysis. Theory, Methods and Applications 26 659-689 (1996). | DOI | MR | Zbl
[16] Meir, A. J., Schmidt, P. G.: On electromagnetically and thermally driven liquid-metal flows. Nonlinear analysis 47 3281-3294 (2001). | DOI | MR | Zbl
[17] Naumann, J.: Existence of weak solutions to the equations of stationary motion of heat-conducting incompressible viscous fluids. In Progress Nonlin. Diff. Equs. Appl., volume 64, pages 373-390, Basel, 2005. Birkhäuser. | MR | Zbl
[18] Rakotoson, J.-M.: Quasilinear elliptic problems with measures as data. Diff. Integral Eqs. 4 449-457 (1991). | MR | Zbl
[19] Tiihonen, T.: Stefan-Boltzmann radiation on non-convex surfaces. Math. Meth. in Appl. Sci. 20 47-57 (1997). | DOI | MR
[20] Voigt, A.: Numerical Simulation of Industrial Crystal Growth. PhD thesis, {Technische-Universität} München, Germany (2001). | Zbl
[21] Zeidler, E.: Nonlinear functional analysis and its applications. II/B. Springer Verlag, New York (1990). | MR | Zbl