On the $2k$-th power mean of $\frac {L'}L(1,\chi )$ with the weight of Gauss sums
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 781-789 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The main purpose of this paper is to study the hybrid mean value of $\frac {L'}L(1,\chi )$ and Gauss sums by using the estimates for trigonometric sums as well as the analytic method. An asymptotic formula for the hybrid mean value $\sum _{\chi \neq \chi _0} |\tau (\chi )| |\frac {L'}L(1,\chi )|^{2k}$ of $\frac {L'}L$ and Gauss sums will be proved using analytic methods and estimates for trigonometric sums.
The main purpose of this paper is to study the hybrid mean value of $\frac {L'}L(1,\chi )$ and Gauss sums by using the estimates for trigonometric sums as well as the analytic method. An asymptotic formula for the hybrid mean value $\sum _{\chi \neq \chi _0} |\tau (\chi )| |\frac {L'}L(1,\chi )|^{2k}$ of $\frac {L'}L$ and Gauss sums will be proved using analytic methods and estimates for trigonometric sums.
Classification : 11L07, 11M20
Keywords: Dirichlet L-function; Gauss sums; asymptotic formula
@article{CMJ_2009_59_3_a16,
     author = {Ren, Dongmei and Yi, Yuan},
     title = {On the $2k$-th power mean of $\frac {L'}L(1,\chi )$ with the weight of {Gauss} sums},
     journal = {Czechoslovak Mathematical Journal},
     pages = {781--789},
     year = {2009},
     volume = {59},
     number = {3},
     mrnumber = {2545656},
     zbl = {1204.11140},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a16/}
}
TY  - JOUR
AU  - Ren, Dongmei
AU  - Yi, Yuan
TI  - On the $2k$-th power mean of $\frac {L'}L(1,\chi )$ with the weight of Gauss sums
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 781
EP  - 789
VL  - 59
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a16/
LA  - en
ID  - CMJ_2009_59_3_a16
ER  - 
%0 Journal Article
%A Ren, Dongmei
%A Yi, Yuan
%T On the $2k$-th power mean of $\frac {L'}L(1,\chi )$ with the weight of Gauss sums
%J Czechoslovak Mathematical Journal
%D 2009
%P 781-789
%V 59
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a16/
%G en
%F CMJ_2009_59_3_a16
Ren, Dongmei; Yi, Yuan. On the $2k$-th power mean of $\frac {L'}L(1,\chi )$ with the weight of Gauss sums. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 781-789. http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a16/

[1] Apostol, Tom M.: Introduction to Analytic Number Theory. Springer-Verlag, New York (1976), 160-162. | MR | Zbl

[2] Chengdong, Pan, Chengbiao, Pan: Element of the Analytic Number Theory. Science Press, Beijing (1991), 243-248.

[3] Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Springer-Verlag, New York (1982), 88-91. | MR | Zbl

[4] Yuan, Yi, Wenpeng, Zhang: On the first power mean of Dirichlet L-functions with the weight of Gauss sums. Journal of Systems Science and Mathematical Sciences 20 (2000), 346-351. | MR

[5] Yuan, Yi, Wenpeng, Zhang: On the $2k$-th Power mean of Dirichlet L-function with the weight of Gauss sums. Advances in Mathematics 31 (2002), 517-526. | MR

[6] Davenport, H.: Multiplicative Number Theory. Springer-Verlag, New York (1980). | MR | Zbl

[7] Wenpeng, Zhang: A new mean value formula of Dirichlet's L-function. Science in China (Series A) 35 (1992), 1173-1179. | MR

[8] Huaning, Liu, Xiaobeng, Zhang: On the mean value of $\frac{L'}L(1,\chi)$. Journal of Mathematical Analysis and Applications 320 (2006), 562-577. | MR

[9] Siegel, C. L.: Über die Klassenzahl quadratischer Zahlkörper. Acta. Arith. 1 (1935), 83-86. | DOI | Zbl

[10] Chengdong, Pan, Chengbiao, Pan: The Elementary Number Theory. Peking University Press, Beijing (2003).