Some concepts of regularity for parametric multiple-integral problems in the calculus of variations
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 741-758 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We show that asserting the regularity (in the sense of Rund) of a first-order parametric multiple-integral variational problem is equivalent to asserting that the differential of the projection of its Hilbert-Carathéodory form is multisymplectic, and is also equivalent to asserting that Dedecker extremals of the latter $(m+1)$-form are holonomic.
We show that asserting the regularity (in the sense of Rund) of a first-order parametric multiple-integral variational problem is equivalent to asserting that the differential of the projection of its Hilbert-Carathéodory form is multisymplectic, and is also equivalent to asserting that Dedecker extremals of the latter $(m+1)$-form are holonomic.
Classification : 37Jxx, 49K10, 49N60, 53Cxx, 58E15, 70Gxx
Keywords: parametric variational problem; regularity; multisymplectic
@article{CMJ_2009_59_3_a13,
     author = {Crampin, M. and Saunders, D. J.},
     title = {Some concepts of regularity for parametric multiple-integral problems in the calculus of variations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {741--758},
     year = {2009},
     volume = {59},
     number = {3},
     mrnumber = {2545653},
     zbl = {1224.58012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a13/}
}
TY  - JOUR
AU  - Crampin, M.
AU  - Saunders, D. J.
TI  - Some concepts of regularity for parametric multiple-integral problems in the calculus of variations
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 741
EP  - 758
VL  - 59
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a13/
LA  - en
ID  - CMJ_2009_59_3_a13
ER  - 
%0 Journal Article
%A Crampin, M.
%A Saunders, D. J.
%T Some concepts of regularity for parametric multiple-integral problems in the calculus of variations
%J Czechoslovak Mathematical Journal
%D 2009
%P 741-758
%V 59
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a13/
%G en
%F CMJ_2009_59_3_a13
Crampin, M.; Saunders, D. J. Some concepts of regularity for parametric multiple-integral problems in the calculus of variations. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 741-758. http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a13/

[1] Cantrijn, F., Ibort, A., Léon, M. de: On the geometry of multisymplectic manifolds. J. Australian Math. Soc. 66 (1999), 303-330. | DOI | MR

[2] Cariñena, J. F., Crampin, M., Ibort, L. A.: On the multisymplectic formalism for first order field theories. Diff. Geom. Appl. 1 (1991), 345-374. | DOI | MR

[3] Crampin, M., Saunders, D. J.: The Hilbert-Carathéodory form for parametric multiple integral problems in the calculus of variations. Acta Applicandae Math. 76 (2003), 37-55. | DOI | MR | Zbl

[4] Crampin, M., Saunders, D. J.: The Hilbert-Carathéodory and Poincaré-Cartan forms for higher-order multiple-integral variational problems. Houston J. Math. 30 (2004), 657-689. | MR | Zbl

[5] Crampin, M., Saunders, D. J.: On null Lagrangians. Diff. Geom. Appl. 22 (2005), 131-146. | DOI | MR | Zbl

[6] Dedecker, P. M.: On the generalization of symplectic geometry to multiple integrals in the calculus of variations. Lecture Notes in Mathematics, Springer 570 (1977), 395-456. | DOI | MR | Zbl

[7] Giaquinta, M., Hildenbrandt, S.: Calculus of Variations II. Springer (1996). | MR

[8] Krupková, O.: Hamiltonian field theory. J. Geom. Phys. 43 (2002), 93-132. | DOI | MR

[9] Rund, H.: The Hamilton-Jacobi Equation in the Calculus of Variations. Van Nostrand (1966). | MR

[10] Rund, H.: A geometrical theory of multiple integral problems in the calculus of variations. Canadian J. Math. 20 (1968), 639-657. | DOI | MR | Zbl