Keywords: parametric variational problem; regularity; multisymplectic
@article{CMJ_2009_59_3_a13,
author = {Crampin, M. and Saunders, D. J.},
title = {Some concepts of regularity for parametric multiple-integral problems in the calculus of variations},
journal = {Czechoslovak Mathematical Journal},
pages = {741--758},
year = {2009},
volume = {59},
number = {3},
mrnumber = {2545653},
zbl = {1224.58012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a13/}
}
TY - JOUR AU - Crampin, M. AU - Saunders, D. J. TI - Some concepts of regularity for parametric multiple-integral problems in the calculus of variations JO - Czechoslovak Mathematical Journal PY - 2009 SP - 741 EP - 758 VL - 59 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a13/ LA - en ID - CMJ_2009_59_3_a13 ER -
%0 Journal Article %A Crampin, M. %A Saunders, D. J. %T Some concepts of regularity for parametric multiple-integral problems in the calculus of variations %J Czechoslovak Mathematical Journal %D 2009 %P 741-758 %V 59 %N 3 %U http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a13/ %G en %F CMJ_2009_59_3_a13
Crampin, M.; Saunders, D. J. Some concepts of regularity for parametric multiple-integral problems in the calculus of variations. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 741-758. http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a13/
[1] Cantrijn, F., Ibort, A., Léon, M. de: On the geometry of multisymplectic manifolds. J. Australian Math. Soc. 66 (1999), 303-330. | DOI | MR
[2] Cariñena, J. F., Crampin, M., Ibort, L. A.: On the multisymplectic formalism for first order field theories. Diff. Geom. Appl. 1 (1991), 345-374. | DOI | MR
[3] Crampin, M., Saunders, D. J.: The Hilbert-Carathéodory form for parametric multiple integral problems in the calculus of variations. Acta Applicandae Math. 76 (2003), 37-55. | DOI | MR | Zbl
[4] Crampin, M., Saunders, D. J.: The Hilbert-Carathéodory and Poincaré-Cartan forms for higher-order multiple-integral variational problems. Houston J. Math. 30 (2004), 657-689. | MR | Zbl
[5] Crampin, M., Saunders, D. J.: On null Lagrangians. Diff. Geom. Appl. 22 (2005), 131-146. | DOI | MR | Zbl
[6] Dedecker, P. M.: On the generalization of symplectic geometry to multiple integrals in the calculus of variations. Lecture Notes in Mathematics, Springer 570 (1977), 395-456. | DOI | MR | Zbl
[7] Giaquinta, M., Hildenbrandt, S.: Calculus of Variations II. Springer (1996). | MR
[8] Krupková, O.: Hamiltonian field theory. J. Geom. Phys. 43 (2002), 93-132. | DOI | MR
[9] Rund, H.: The Hamilton-Jacobi Equation in the Calculus of Variations. Van Nostrand (1966). | MR
[10] Rund, H.: A geometrical theory of multiple integral problems in the calculus of variations. Canadian J. Math. 20 (1968), 639-657. | DOI | MR | Zbl