Keywords: effect algebras; modular measures; extension; Vitali-Hahn-Saks theorem; Nikodým theorem; decomposition theorem; control theorems; range; Liapunoff theorem
@article{CMJ_2009_59_3_a11,
author = {Barbieri, Giuseppina},
title = {An extension theorem for modular measures on effect algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {707--719},
year = {2009},
volume = {59},
number = {3},
mrnumber = {2545651},
zbl = {1224.28037},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a11/}
}
Barbieri, Giuseppina. An extension theorem for modular measures on effect algebras. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 707-719. http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a11/
[1] Avallone, A.: Lattice uniformities on orthomodular structures. Math. Slovaca 51 (2001), 403-419. | MR | Zbl
[2] Avallone, A.: Cafiero and Nikodým boundedness theorems in effect algebras. Ital. J. Pure Appl. Math. 20 (2006), 203-214. | MR | Zbl
[3] Avallone, A.: Separating points of measures on effect algebras. Math. Slovaca 57 (2007), 129-140. | DOI | MR | Zbl
[4] Avallone, A., Barbieri, G., Vitolo, P.: Hahn decomposition of modular measures and applications. Comment. Math. Prace Mat. 43 (2003), 149-168. | MR | Zbl
[5] Avallone, A., Barbieri, G., Vitolo, P., Weber, H.: Decomposition of effect algebras and the Hammer-Sobczyk theorem. (to appear) in Algebra Universalis. | MR | Zbl
[6] Avallone, A., Basile, A.: On a Marinacci uniqueness theorem for measures. J. Math. Anal. Appl. 286 (2003), 378-390. | DOI | MR | Zbl
[7] Avallone, A., Simone, A. De, Vitolo, P.: Effect algebras and extensions of measures. Bollettino U.M.I. 9-B (2006), 423-444. | MR | Zbl
[8] Avallone, A., Rinauro, S., Vitolo, P.: Boundedness and convergence theorems in effect algebras. Tatra Mountains Math. Publ. 37 (2007), 1-16. | MR | Zbl
[9] Avallone, A., Vitolo, P.: Decomposition and control theorems for measures on effect algebras. Sci. Math. Japon 58 (2003), 1-14. | MR
[10] Avallone, A., Vitolo, P.: Congruences and ideals of effect algebras. Order 20 (2003), 67-77. | MR | Zbl
[11] Basile, A.: Controls of families of finitely additive functions. Ricerche Mat. 35 (1986), 291-302. | MR | Zbl
[12] Barbieri, G.: A note on fuzzy measures. J. Electr. Eng. 52 (2001), 67-70. | MR | Zbl
[13] Barbieri, G.: Lyapunov's theorem for measures on $D$-posets. Internat. J. Theoret. Phys. 43 (2004), 1613-1623. | MR | Zbl
[14] Rao, K. P. S. Bhaskara, Rao, M. Bhaskara: Theory of Charges. A Study of Finitely Additive Measures. Academic Press, Inc. New York (1983). | MR
[15] Bennett, M. K., Foulis, D. J.: Effect algebras and unsharp quantum logics. Special issue dedicated to Constantin Piron on the occasion of his sixtieth birthday. Found. Phys. 24 (1994), 1331-1352. | MR
[16] Diestel, J., Uhl, J. J.: Vector Measures. Mathematical Surveys, No. 15. American Mathematical Society, Providence, R.I. (1977). | MR | Zbl
[17] Dvurecenskij, A., Pulmannovà, S.: New Trends in Quantum Structures. Kluwer Academic Publishers, Bratislava (2000). | MR
[18] Fischer, W., Schoeler, U.: The range of vector measures in Orlicz spaces. Studia Math. 59 (1976), 53-61. | MR
[19] Fleischer, I., Traynor, T.: Equivalence of group-valued measures on an abstract lattice. Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 549-556. | MR | Zbl
[20] Foulis, D., Greechie, R. J., Pulmannová, S.: The center of an effect algebra. Order 12 (1995), 91-106. | MR
[21] Kadets, V. M.: A remark on Lyapunov's theorem on a vector measure. Russian Funktsional. Anal. i Prilozhen. 25 (1991), 78-80 Translation in Funct. Anal. Appl. 25 (1992), 295-297. | MR
[22] Kadets, V. M., Shekhtman, G.: Lyapunov's theorem for $l\sb p$-valued measures. Russian Algebra i Analiz 4 (1992), 148-154 Translation in St. Petersburg Math. J. 4 (1993), 961-966. | MR
[23] Kluvánek, I.: The range of a vector-valued measure. Math. Systems Theory 7 (1973), 44-54. | MR
[24] Shapiro, J.: On convexity and compactness in $F$-spaces with bases. Indiana Univ. Math. J. 21 (1971/72), 1073-1090. | MR
[25] Uhl, J.: The range of a vector-valued measure. Proc. Amer. Math. Soc. 23 (1969), 158-163. | MR | Zbl
[26] Weber, H.: Group- and vector-valued $s$-bounded contents. Lecture Notes in Math. 1089, Springer (1984), 181-198. | MR | Zbl
[27] Weber, H.: Compactness in spaces of group-valued contents, the Vitali-Hahn-Saks theorem and Nikodým's boundedness theorem. Rocky Mountain J. Math. 16 (1986), 253-275. | MR | Zbl
[28] Weber, H.: Uniform lattices. I. A generalization of topological Riesz spaces and topological Boolean rings. Ann. Mat. Pura Appl. 160 (1991), 1992 547-570. | MR | Zbl
[29] Weber, H.: Uniform lattices. II. Order continuity and exhaustivity. Ann. Mat. Pura Appl. 165 (1993), 133-158. | MR | Zbl
[30] Weber, H.: On modular functions. Funct. Approx. Comment. Math. 24 (1996), 35-52. | MR | Zbl
[31] Weber, H.: Uniform lattices and modular functions. Atti Sem. Mat. Fis. Univ. Modena XLVII (1999), 159-182. | MR | Zbl
[32] Weber, H.: FN-topologies and group-valued measures. Handbook of measure theory, Vol. I, II. 703-743 North-Holland, Amsterdam (2002). | MR
[33] Weber, H.: Two extension theorems. Modular functions on complemented lattices. Czech. Math. J. 52 (2002), 55-74. | MR | Zbl