Strong convergence theorems of $k$-strict pseudo-contractions in Hilbert spaces
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 695-706 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $K$ be a nonempty closed convex subset of a real Hilbert space $H$ such that $K\pm K\subset K$, $T\: K\rightarrow H$ a $k$-strict pseudo-contraction for some $0\leq k1$ such that $F(T)=\{x\in K\: x=Tx\}\neq \emptyset $. Consider the following iterative algorithm given by $$ \forall x_1\in K,\quad x_{n+1}=\alpha _n\gamma f(x_n)+\beta _nx_n+((1-\beta _n)I-\alpha _n A)P_KSx_n,\quad n\geq 1, $$ where $S\: K\rightarrow H$ is defined by $Sx=kx+(1-k)Tx$, $P_K$ is the metric projection of $H$ onto $K$, $A$ is a strongly positive linear bounded self-adjoint operator, $f$ is a contraction. It is proved that the sequence $\{x_n\}$ generated by the above iterative algorithm converges strongly to a fixed point of $T$, which solves a variational inequality related to the linear operator $A$. Our results improve and extend the results announced by many others.
Let $K$ be a nonempty closed convex subset of a real Hilbert space $H$ such that $K\pm K\subset K$, $T\: K\rightarrow H$ a $k$-strict pseudo-contraction for some $0\leq k1$ such that $F(T)=\{x\in K\: x=Tx\}\neq \emptyset $. Consider the following iterative algorithm given by $$ \forall x_1\in K,\quad x_{n+1}=\alpha _n\gamma f(x_n)+\beta _nx_n+((1-\beta _n)I-\alpha _n A)P_KSx_n,\quad n\geq 1, $$ where $S\: K\rightarrow H$ is defined by $Sx=kx+(1-k)Tx$, $P_K$ is the metric projection of $H$ onto $K$, $A$ is a strongly positive linear bounded self-adjoint operator, $f$ is a contraction. It is proved that the sequence $\{x_n\}$ generated by the above iterative algorithm converges strongly to a fixed point of $T$, which solves a variational inequality related to the linear operator $A$. Our results improve and extend the results announced by many others.
Classification : 47H09, 47H10, 47J25
Keywords: Hilbert space; nonexpansive mapping; strict pseudo-contraction; iterative algorithm; fixed point
@article{CMJ_2009_59_3_a10,
     author = {Qin, Xiaolong and Kang, Shin Min and Shang, Meijuan},
     title = {Strong convergence theorems of $k$-strict pseudo-contractions in {Hilbert} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {695--706},
     year = {2009},
     volume = {59},
     number = {3},
     mrnumber = {2545650},
     zbl = {1218.47115},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a10/}
}
TY  - JOUR
AU  - Qin, Xiaolong
AU  - Kang, Shin Min
AU  - Shang, Meijuan
TI  - Strong convergence theorems of $k$-strict pseudo-contractions in Hilbert spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 695
EP  - 706
VL  - 59
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a10/
LA  - en
ID  - CMJ_2009_59_3_a10
ER  - 
%0 Journal Article
%A Qin, Xiaolong
%A Kang, Shin Min
%A Shang, Meijuan
%T Strong convergence theorems of $k$-strict pseudo-contractions in Hilbert spaces
%J Czechoslovak Mathematical Journal
%D 2009
%P 695-706
%V 59
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a10/
%G en
%F CMJ_2009_59_3_a10
Qin, Xiaolong; Kang, Shin Min; Shang, Meijuan. Strong convergence theorems of $k$-strict pseudo-contractions in Hilbert spaces. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 695-706. http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a10/

[1] Acedo, G. L., Xu, H. K.: Iterative methods for strict pseudo-contractions in Hilbert spaces. Nonlinear Anal. 67 (2007), 2258-2271. | DOI | MR | Zbl

[2] Browder, F. E.: Fixed point theorems for noncompact mappings in Hilbert spaces. Proc. Natl. Acad. Sci. USA 53 (1965), 1272-1276. | DOI | MR

[3] Browder, F. E.: Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces. Arch. Ration. Mech. Anal. 24 (1967), 82-90. | DOI | MR | Zbl

[4] Browder, F. E., Petryshyn, W. V.: Construction of fixed points of nonlinear mappings in Hilbert space. J. Math. Anal. Appl. 20 (1967), 197-228. | DOI | MR | Zbl

[5] Halpern, B.: Fixed points of nonexpansive maps. Bull. Amer. Math. Soc. 73 (1967), 957-961. | DOI | MR

[6] Lions, P. L.: Approximation de points fixes de contractions. C.R. Acad. Sci. Paris Ser. A--B 284 (1977), A1357--A1359. | MR | Zbl

[7] Marino, G., Xu, H. K.: Weak and strong convergence theorems for $k$-strict pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl. 329 (2007), 336-349. | DOI | MR

[8] Marino, G., Xu, H. K.: A general iterative method for nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 318 (2006), 43-52. | DOI | MR | Zbl

[9] Moudafi, A.: Viscosity approximation methods for fixed points problems. J. Math. Anal. Appl. 241 (2000), 46-55. | DOI | MR | Zbl

[10] Suzuki, T.: Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces. Fixed Point Theory Appl. (2005), 103-123. | MR | Zbl

[11] Wittmann, R.: Approximation of fixed points of nonexpansive mappings. Arch. Math. 58 (1992), 486-491. | DOI | MR | Zbl

[12] Xu, H. K.: An iterative approach to quadratic optimization. J. Optim. Theory Appl. 116 (2003), 659-678. | DOI | MR | Zbl

[13] Xu, H. K.: Iterative algorithms for nonlinear operators. J. London Math. Soc. 66 (2002), 240-256. | DOI | MR | Zbl

[14] Xu, H. K.: Another control condition in an iterative method for nonexpansive mappings. Bull. Austral. Math. Soc. 65 (2002), 109-113. | DOI | MR | Zbl

[15] Xu, H. K.: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298 (2004), 279-291. | DOI | MR | Zbl

[16] Zhou, H.: Convergence theorems of fixed points for $k$-strict pseudo-contractions in Hilbert space. Nonlinear Analysis 69 (2008), 456-462. | DOI | MR