Keywords: associated graded algebra; $QF$ algebra; $QF$-3 algebra; upper Loewy series; lower Loewy series
@article{CMJ_2009_59_3_a1,
author = {Tachikawa, Hiroyuki},
title = {Loewy coincident algebra and $QF$-3 associated graded algebra},
journal = {Czechoslovak Mathematical Journal},
pages = {583--589},
year = {2009},
volume = {59},
number = {3},
mrnumber = {2545641},
zbl = {1224.13007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a1/}
}
Tachikawa, Hiroyuki. Loewy coincident algebra and $QF$-3 associated graded algebra. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 583-589. http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a1/
[1] Auslander, M.: Representation dimension of Artin algebras. Queen Mary College Lecture Notes (1971). | Zbl
[2] Morita, K.: Duality for modules and its applications to the theory of rings with minimum condition. Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A. No. 150 (1958), 1-60. | MR | Zbl
[3] Nakayama, T.: On Frobeniusean algebras. II, Ann. Math. 42 (1941), 1-21. | DOI | MR | Zbl
[4] Tachikawa, H.: Quasi-Frobenius rings and generalizations. LNM 351 (1973). | Zbl
[5] Tachikawa, H.: QF rings and QF associated graded rings. Proc. 38th Symposium on Ring Theory and Representation Theory, Japan 45-51.\hfil http://fuji.cec.yamanash.ac.jp/ring/oldmeeting/2005/reprint2005/abst-3-2.pdf | MR
[6] Thrall, R. M.: Some generalizations of quasi-Frobenius algebras. Trans. Amer. Math. Soc. 64 (1948), 173-183. | MR | Zbl