A class of Banach sequence spaces analogous to the space of Popov
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 573-582
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Hagler and the first named author introduced a class of hereditarily $l_1$ Banach spaces which do not possess the Schur property. Then the first author extended these spaces to a class of hereditarily $l_p$ Banach spaces for $1\leq p\infty $. Here we use these spaces to introduce a new class of hereditarily $l_p(c_0)$ Banach spaces analogous of the space of Popov. In particular, for $p=1$ the spaces are further examples of hereditarily $l_1$ Banach spaces failing the Schur property.
Hagler and the first named author introduced a class of hereditarily $l_1$ Banach spaces which do not possess the Schur property. Then the first author extended these spaces to a class of hereditarily $l_p$ Banach spaces for $1\leq p\infty $. Here we use these spaces to introduce a new class of hereditarily $l_p(c_0)$ Banach spaces analogous of the space of Popov. In particular, for $p=1$ the spaces are further examples of hereditarily $l_1$ Banach spaces failing the Schur property.
Classification :
46B20, 46B25, 46B45, 46E30
Keywords: Banach spaces; Schur property; hereditarily $l_p$
Keywords: Banach spaces; Schur property; hereditarily $l_p$
@article{CMJ_2009_59_3_a0,
author = {Azimi, P. and Ledari, A. A.},
title = {A class of {Banach} sequence spaces analogous to the space of {Popov}},
journal = {Czechoslovak Mathematical Journal},
pages = {573--582},
year = {2009},
volume = {59},
number = {3},
mrnumber = {2545640},
zbl = {1224.46017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a0/}
}
Azimi, P.; Ledari, A. A. A class of Banach sequence spaces analogous to the space of Popov. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 573-582. http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a0/