A class of Banach sequence spaces analogous to the space of Popov
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 573-582 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Hagler and the first named author introduced a class of hereditarily $l_1$ Banach spaces which do not possess the Schur property. Then the first author extended these spaces to a class of hereditarily $l_p$ Banach spaces for $1\leq p\infty $. Here we use these spaces to introduce a new class of hereditarily $l_p(c_0)$ Banach spaces analogous of the space of Popov. In particular, for $p=1$ the spaces are further examples of hereditarily $l_1$ Banach spaces failing the Schur property.
Hagler and the first named author introduced a class of hereditarily $l_1$ Banach spaces which do not possess the Schur property. Then the first author extended these spaces to a class of hereditarily $l_p$ Banach spaces for $1\leq p\infty $. Here we use these spaces to introduce a new class of hereditarily $l_p(c_0)$ Banach spaces analogous of the space of Popov. In particular, for $p=1$ the spaces are further examples of hereditarily $l_1$ Banach spaces failing the Schur property.
Classification : 46B20, 46B25, 46B45, 46E30
Keywords: Banach spaces; Schur property; hereditarily $l_p$
@article{CMJ_2009_59_3_a0,
     author = {Azimi, P. and Ledari, A. A.},
     title = {A class of {Banach} sequence spaces analogous to the space of {Popov}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {573--582},
     year = {2009},
     volume = {59},
     number = {3},
     mrnumber = {2545640},
     zbl = {1224.46017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a0/}
}
TY  - JOUR
AU  - Azimi, P.
AU  - Ledari, A. A.
TI  - A class of Banach sequence spaces analogous to the space of Popov
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 573
EP  - 582
VL  - 59
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a0/
LA  - en
ID  - CMJ_2009_59_3_a0
ER  - 
%0 Journal Article
%A Azimi, P.
%A Ledari, A. A.
%T A class of Banach sequence spaces analogous to the space of Popov
%J Czechoslovak Mathematical Journal
%D 2009
%P 573-582
%V 59
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a0/
%G en
%F CMJ_2009_59_3_a0
Azimi, P.; Ledari, A. A. A class of Banach sequence spaces analogous to the space of Popov. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 573-582. http://geodesic.mathdoc.fr/item/CMJ_2009_59_3_a0/

[1] Azimi, P.: A new class of Banach sequence spaces. Bull. of Iranian Math. Society 28 (2002), 57-68. | MR | Zbl

[2] Azimi, P., Hagler, J.: Examples of hereditarily $ \ell_1$ Banach spaces failing the Schur property. Pacific J. Math. 122 (1986), 287-297. | DOI | MR

[3] Bourgain, J.: $\ell_1$-subspace of Banach spaces. Lecture notes. Free University of Brussels.

[4] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. Vol. I sequence Spaces, Springer Verlag, Berlin. | MR | Zbl

[5] Popov, M. M.: A hereditarily $\ell_1$ subspace of $L_1$ without the Schur property. Proc. Amer. Math. Soc. 133 (2005), 2023-2028. | DOI | MR | Zbl

[6] Popov, M. M.: More examples of hereditarily $\ell _p$ Banach spaces. Ukrainian Math. Bull. 2 (2005), 95-111. | MR | Zbl