Keywords: vecrot lattice; Boolean algebra; internal direct factor
@article{CMJ_2009_59_2_a9,
author = {Jakub{\'\i}k, J\'an},
title = {On the {Schr\"oder-Bernstein} problem for {Carath\'eodory} vector lattices},
journal = {Czechoslovak Mathematical Journal},
pages = {419--430},
year = {2009},
volume = {59},
number = {2},
mrnumber = {2532383},
zbl = {1224.46006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a9/}
}
Jakubík, Ján. On the Schröder-Bernstein problem for Carathéodory vector lattices. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 419-430. http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a9/
[1] Birkhoff, G.: Lattice Theory. Am. Math. Soc. Providence (1967). | Zbl
[2] Cater, F. S.: Note on a variation of the Schröder-Bernstein problem for fields. Czech. Math. J. 52 (2002), 717-720. | DOI | MR | Zbl
[3] Chang, C. C.: Cardinal and ordinal multiplication of relation types. Proc. Sympos. Pure Math., Vol. II Am. Math. Soc. Providence (1961), 123-128. | MR | Zbl
[4] Simone, A. De, Mundici, D., Navara, M.: A Cantor-Bernstein theorem for $\sigma$-complete MV-algebras. Czech. Math. J. 53 (2002), 437-447. | DOI | MR
[5] Dvurečenskij, A.: Central elements and Cantor-Bernstein's theorem for pseudo-effect algebras. J. Austr. Math. Soc. 74 (2003), 121-143. | DOI | MR | Zbl
[6] Galego, E. M.: Schröder-Bernstein quintuples for Banach spaces. Bull. Pol. Acad. Sci., Math. 54 (2006), 113-124. | DOI | MR | Zbl
[7] Galego, E. M.: An arithmetical characterization of decompositions methods in Banach spaces via supplemented subspaces. Glasg. Math. J. 47 (2005), 489-500. | DOI | MR
[8] Goffman, C.: Remarks on lattice ordered groups and vector lattices. I. Carathéodory functions. Trans. Am. Math. Soc. 88 (1958), 107-120. | MR | Zbl
[9] Gowers, W. T.: A solution to the Schröder-Bernstein problem for Banach spaces. Bull. Lond. Math. Soc. 28 (1996), 297-304. | DOI | MR | Zbl
[10] Hanf, W.: On some fundamental problems concerning isomorphisms of Boolean algebras. Math. Scand. 5 (1957), 205-217. | DOI | MR
[11] Jakubík, J.: Cardinal properties of lattice ordered groups. Fundam. Math. 74 (1972), 85-98. | DOI | MR
[12] Jakubík, J.: Cantor-Bernstein theorem for MV-algebras. Czech. Math. J. 45 (1999), 517-526. | DOI | MR
[13] Jakubík, J.: On orthogonally $\sigma$-complete lattice ordered groups. Czech. Math. J. 52 (2002), 881-888. | DOI | MR
[14] Jakubík, J.: On Carathéodory vector lattices. Math. Slovaca 53 (2003), 479-503. | MR
[15] Jakubík, J.: On the Schröder-Bernstein problem for abelian lattice ordered groups and for MV-algebras. Soft Comput. 8 (2004), 581-586. | DOI
[16] Kantorovich, L. V., Vulikh, B. Z., Pinsker, A. G.: Functional Analysis in Semiordered Spaces. Gostekhizdat Moskva-Leningrad (1950), Russian.
[17] Oger, F.: Products lexicographiques de groupes ordonnés: Isomorphisme et équivalence élémentaire. J. Algebra 109 (1987), 452-467. | DOI | MR
[18] Sikorski, R.: A generalization of theorem of Banach and Cantor-Bernstein. Colloq. Math. 1 (1948), 140-144. | DOI | MR
[19] Tarski, A.: Cardinal Algebras. Oxford University Press New York (1949). | MR | Zbl
[20] Trnková, V.: Isomorphisms of sums of countable Boolean algebras. Proc. Am. Math. Soc. 80 (1980), 389-392. | DOI | MR