On the Schröder-Bernstein problem for Carathéodory vector lattices
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 419-430 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this note we prove that there exists a Carathéodory vector lattice $V$ such that $V\cong V^3$ and $V\ncong V^2$. This yields that $V$ is a solution of the Schröder-Bernstein problem for Carathéodory vector lattices. We also show that no Carathéodory Banach lattice is a solution of the Schröder-Bernstein problem.
In this note we prove that there exists a Carathéodory vector lattice $V$ such that $V\cong V^3$ and $V\ncong V^2$. This yields that $V$ is a solution of the Schröder-Bernstein problem for Carathéodory vector lattices. We also show that no Carathéodory Banach lattice is a solution of the Schröder-Bernstein problem.
Classification : 06F15, 06F20, 46A40
Keywords: vecrot lattice; Boolean algebra; internal direct factor
@article{CMJ_2009_59_2_a9,
     author = {Jakub{\'\i}k, J\'an},
     title = {On the {Schr\"oder-Bernstein} problem for {Carath\'eodory} vector lattices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {419--430},
     year = {2009},
     volume = {59},
     number = {2},
     mrnumber = {2532383},
     zbl = {1224.46006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a9/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - On the Schröder-Bernstein problem for Carathéodory vector lattices
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 419
EP  - 430
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a9/
LA  - en
ID  - CMJ_2009_59_2_a9
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T On the Schröder-Bernstein problem for Carathéodory vector lattices
%J Czechoslovak Mathematical Journal
%D 2009
%P 419-430
%V 59
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a9/
%G en
%F CMJ_2009_59_2_a9
Jakubík, Ján. On the Schröder-Bernstein problem for Carathéodory vector lattices. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 419-430. http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a9/

[1] Birkhoff, G.: Lattice Theory. Am. Math. Soc. Providence (1967). | Zbl

[2] Cater, F. S.: Note on a variation of the Schröder-Bernstein problem for fields. Czech. Math. J. 52 (2002), 717-720. | DOI | MR | Zbl

[3] Chang, C. C.: Cardinal and ordinal multiplication of relation types. Proc. Sympos. Pure Math., Vol. II Am. Math. Soc. Providence (1961), 123-128. | MR | Zbl

[4] Simone, A. De, Mundici, D., Navara, M.: A Cantor-Bernstein theorem for $\sigma$-complete MV-algebras. Czech. Math. J. 53 (2002), 437-447. | DOI | MR

[5] Dvurečenskij, A.: Central elements and Cantor-Bernstein's theorem for pseudo-effect algebras. J. Austr. Math. Soc. 74 (2003), 121-143. | DOI | MR | Zbl

[6] Galego, E. M.: Schröder-Bernstein quintuples for Banach spaces. Bull. Pol. Acad. Sci., Math. 54 (2006), 113-124. | DOI | MR | Zbl

[7] Galego, E. M.: An arithmetical characterization of decompositions methods in Banach spaces via supplemented subspaces. Glasg. Math. J. 47 (2005), 489-500. | DOI | MR

[8] Goffman, C.: Remarks on lattice ordered groups and vector lattices. I. Carathéodory functions. Trans. Am. Math. Soc. 88 (1958), 107-120. | MR | Zbl

[9] Gowers, W. T.: A solution to the Schröder-Bernstein problem for Banach spaces. Bull. Lond. Math. Soc. 28 (1996), 297-304. | DOI | MR | Zbl

[10] Hanf, W.: On some fundamental problems concerning isomorphisms of Boolean algebras. Math. Scand. 5 (1957), 205-217. | DOI | MR

[11] Jakubík, J.: Cardinal properties of lattice ordered groups. Fundam. Math. 74 (1972), 85-98. | DOI | MR

[12] Jakubík, J.: Cantor-Bernstein theorem for MV-algebras. Czech. Math. J. 45 (1999), 517-526. | DOI | MR

[13] Jakubík, J.: On orthogonally $\sigma$-complete lattice ordered groups. Czech. Math. J. 52 (2002), 881-888. | DOI | MR

[14] Jakubík, J.: On Carathéodory vector lattices. Math. Slovaca 53 (2003), 479-503. | MR

[15] Jakubík, J.: On the Schröder-Bernstein problem for abelian lattice ordered groups and for MV-algebras. Soft Comput. 8 (2004), 581-586. | DOI

[16] Kantorovich, L. V., Vulikh, B. Z., Pinsker, A. G.: Functional Analysis in Semiordered Spaces. Gostekhizdat Moskva-Leningrad (1950), Russian.

[17] Oger, F.: Products lexicographiques de groupes ordonnés: Isomorphisme et équivalence élémentaire. J. Algebra 109 (1987), 452-467. | DOI | MR

[18] Sikorski, R.: A generalization of theorem of Banach and Cantor-Bernstein. Colloq. Math. 1 (1948), 140-144. | DOI | MR

[19] Tarski, A.: Cardinal Algebras. Oxford University Press New York (1949). | MR | Zbl

[20] Trnková, V.: Isomorphisms of sums of countable Boolean algebras. Proc. Am. Math. Soc. 80 (1980), 389-392. | DOI | MR