Denjoy integral and Henstock-Kurzweil integral in vector lattices. II
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 401-417 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In a previous paper we defined a Denjoy integral for mappings from a vector lattice to a complete vector lattice. In this paper we define a Henstock-Kurzweil integral for mappings from a vector lattice to a complete vector lattice and consider the relation between these two integrals.
In a previous paper we defined a Denjoy integral for mappings from a vector lattice to a complete vector lattice. In this paper we define a Henstock-Kurzweil integral for mappings from a vector lattice to a complete vector lattice and consider the relation between these two integrals.
Classification : 26A39, 46B42, 46G05, 46G10, 46G12
Keywords: derivative; Denjoy integral; Henstock-Kurzweil integral; fundamental theorem of calculus; vector lattice; Riesz space
@article{CMJ_2009_59_2_a8,
     author = {Kawasaki, Toshiharu},
     title = {Denjoy integral and {Henstock-Kurzweil} integral in vector lattices. {II}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {401--417},
     year = {2009},
     volume = {59},
     number = {2},
     mrnumber = {2532374},
     zbl = {1224.46084},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a8/}
}
TY  - JOUR
AU  - Kawasaki, Toshiharu
TI  - Denjoy integral and Henstock-Kurzweil integral in vector lattices. II
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 401
EP  - 417
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a8/
LA  - en
ID  - CMJ_2009_59_2_a8
ER  - 
%0 Journal Article
%A Kawasaki, Toshiharu
%T Denjoy integral and Henstock-Kurzweil integral in vector lattices. II
%J Czechoslovak Mathematical Journal
%D 2009
%P 401-417
%V 59
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a8/
%G en
%F CMJ_2009_59_2_a8
Kawasaki, Toshiharu. Denjoy integral and Henstock-Kurzweil integral in vector lattices. II. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 401-417. http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a8/

[1] Birkhoff, G.: Lattice Theory. Amer. Math. Soc. (1940). | MR | Zbl

[2] Boccuto, A.: Differential and integral calculus in Riesz spaces. Tatra Mt. Math. Publ. 14 (1998), 293-323. | MR

[3] Cristescu, R.: Ordered Vector Spaces and Linear Operators. Abacus Press (1976). | MR | Zbl

[4] Izumi, S.: An abstract integral (X). Proc. Imp. Acad. Japan 18 (1942), 543-547. | DOI | MR | Zbl

[5] Izumi, S., Sunouchi, G., Orihara, M., Kasahara, M.: Theory of Denjoy integral, I--II. Japanese Proc. Physico-Mathematical Soc. Japan 17 (1943), 102-120, 321-353.

[6] Kawasaki, T.: Order derivative of operators in vector lattices. Math. Japonica 46 (1997), 79-84. | MR | Zbl

[7] Kawasaki, T.: On Newton integration in vector spaces. Math. Japonica 46 (1997), 85-90. | MR | Zbl

[8] Kawasaki, T.: Order Lebesgue integration in vector lattices. Math. Japonica 48 (1998), 13-17. | MR | Zbl

[9] Kawasaki, T.: Approximately order derivatives in vector lattices. Math. Japonica 49 (1999), 229-239. | MR | Zbl

[10] Kawasaki, T.: Order derivative and order Newton integral of operators in vector lattices. Far East J. Math. Sci. 1 (1999), 903-926. | MR | Zbl

[11] Kawasaki, T.: Uniquely determinedness of the approximately order derivative. Sci. Math. Japonicae Online 7 (2002), 333-336 Sci. Math. Japonicae 57 (2003), 365-371. | MR | Zbl

[12] Kawasaki, T.: Denjoy integral and Henstock-Kurzweil integral in vector lattices, I. (to appear). | MR

[13] Kubota, Y.: Theory of the Integral. Japanese Maki (1977).

[14] Lee, P. Y.: Lanzhou Lectures on Henstock Integration. World Scientific (1989). | MR | Zbl

[15] Luxemburg, W. A. J., Zaanen, A. C.: Riesz Spaces. North-Holland (1971). | Zbl

[16] McGill, P.: Integration in vector lattices. J. London Math. Soc. 11 (1975), 347-360. | DOI | MR | Zbl

[17] Riečan, B., Neubrunn, T.: Integral, Measure, and Ordering. Kluwer (1997). | MR

[18] Romanovski, P.: Intégrale de Denjoy dans les espaces abstraits. Recueil Mathématique (Mat. Sbornik) N.S. 9 (1941), 67-120. | MR | Zbl

[19] Schaefer, H. H.: Banach Lattices and Positive Operators. Springer-Verlag (1974). | MR | Zbl

[20] Vulikh, B. Z.: Introduction to the Theory of Partially Orderd Spaces. Wolters-Noordhoff (1967). | MR