Keywords: derivative; Denjoy integral; Henstock-Kurzweil integral; fundamental theorem of calculus; vector lattice; Riesz space
@article{CMJ_2009_59_2_a7,
author = {Kawasaki, Toshiharu},
title = {Denjoy integral and {Henstock-Kurzweil} integral in vector lattices. {I}},
journal = {Czechoslovak Mathematical Journal},
pages = {381--399},
year = {2009},
volume = {59},
number = {2},
mrnumber = {2532373},
zbl = {1224.46083},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a7/}
}
Kawasaki, Toshiharu. Denjoy integral and Henstock-Kurzweil integral in vector lattices. I. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 381-399. http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a7/
[1] Birkhoff, G.: Lattice Theory. Amer. Math. Soc. (1940). | MR | Zbl
[2] Boccuto, A.: Differential and integral calculus in Riesz spaces. Tatra Mt. Math. Publ. 14 (1998), 293-323. | MR
[3] Cristescu, R.: Ordered Vector Spaces and Linear Operators. Abacus Press (1976). | MR | Zbl
[4] Izumi, S.: An abstract integral (X). Proc. Imp. Acad. Japan 18 (1942), 543-547. | DOI | MR | Zbl
[5] Izumi, S., Sunouchi, G., Orihara, M., Kasahara, M.: Theory of Denjoy integral, I--II. Japanese Proc. Physico-Mathematical Soc. Japan 17 (1943), 102-120, 321-353.
[6] Kawasaki, T.: Order derivative of operators in vector lattices. Math. Japonica 46 (1997), 79-84. | MR | Zbl
[7] Kawasaki, T.: On Newton integration in vector spaces. Math. Japonica 46 (1997), 85-90. | MR | Zbl
[8] Kawasaki, T.: Order Lebesgue integration in vector lattices. Math. Japonica 48 (1998), 13-17. | MR | Zbl
[9] Kawasaki, T.: Approximately order derivatives in vector lattices. Math. Japonica 49 (1999), 229-239. | MR | Zbl
[10] Kawasaki, T.: Order derivative and order Newton integral of operators in vector lattices. Far East J. Math. Sci. 1 (1999), 903-926. | MR | Zbl
[11] Kawasaki, T.: Uniquely determinedness of the approximately order derivative. Sci. Math. Japonicae Online 7 (2002), 333-336 Sci. Math. Japonicae 57 (2003), 365-371. | MR | Zbl
[12] Kubota, Y.: Theory of the Integral. Japanese Maki (1977).
[13] Lee, P. Y.: Lanzhou Lectures on Henstock Integration. World Scientific (1989). | MR | Zbl
[14] Luxemburg, W. A. J., Zaanen, A. C.: Riesz Spaces. North-Holland (1971). | Zbl
[15] McGill, P.: Integration in vector lattices. J. London Math. Soc. 11 (1975), 347-360. | DOI | MR | Zbl
[16] Riečan, B., Neubrunn, T.: Integral, Measure, and Ordering. Kluwer (1997). | MR
[17] Romanovski, P.: Intégrale de Denjoy dans les espaces abstraits. Recueil Mathématique (Mat. Sbornik) N. S. 9 (1941), 67-120. | MR | Zbl
[18] Schaefer, H. H.: Banach Lattices and Positive Operators. Springer-Verlag (1974). | MR | Zbl
[19] Vulikh, B. Z.: Introduction to the Theory of Partially Orderd Spaces. Wolters-Noordhoff (1967). | MR