Boundary functions on a bounded balanced domain
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 371-379
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We solve the following Dirichlet problem on the bounded balanced domain $\Omega $ with some additional properties: For $p>0$ and a positive lower semi-continuous function $u$ on $\partial \Omega $ with $u(z)=u(\lambda z)$ for $|\lambda |=1$, $z\in \partial \Omega $ we construct a holomorphic function $f\in \Bbb O(\Omega )$ such that $u(z)=\int _{\Bbb Dz}|f|^pd \frak L_{\Bbb Dz}^2$ for $z\in \partial \Omega $, where $\Bbb D=\{\lambda \in \Bbb C\:|\lambda |1\}$.
We solve the following Dirichlet problem on the bounded balanced domain $\Omega $ with some additional properties: For $p>0$ and a positive lower semi-continuous function $u$ on $\partial \Omega $ with $u(z)=u(\lambda z)$ for $|\lambda |=1$, $z\in \partial \Omega $ we construct a holomorphic function $f\in \Bbb O(\Omega )$ such that $u(z)=\int _{\Bbb Dz}|f|^pd \frak L_{\Bbb Dz}^2$ for $z\in \partial \Omega $, where $\Bbb D=\{\lambda \in \Bbb C\:|\lambda |1\}$.
Classification :
30B30, 30D60
Keywords: boundary behavior of holomorphic functions; exceptional sets; boundary functions; Dirichlet problem; Radon inversion problem
Keywords: boundary behavior of holomorphic functions; exceptional sets; boundary functions; Dirichlet problem; Radon inversion problem
@article{CMJ_2009_59_2_a6,
author = {Kot, Piotr},
title = {Boundary functions on a bounded balanced domain},
journal = {Czechoslovak Mathematical Journal},
pages = {371--379},
year = {2009},
volume = {59},
number = {2},
mrnumber = {2532382},
zbl = {1224.30005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a6/}
}
Kot, Piotr. Boundary functions on a bounded balanced domain. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 371-379. http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a6/