Boundary functions on a bounded balanced domain
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 371-379 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We solve the following Dirichlet problem on the bounded balanced domain $\Omega $ with some additional properties: For $p>0$ and a positive lower semi-continuous function $u$ on $\partial \Omega $ with $u(z)=u(\lambda z)$ for $|\lambda |=1$, $z\in \partial \Omega $ we construct a holomorphic function $f\in \Bbb O(\Omega )$ such that $u(z)=\int _{\Bbb Dz}|f|^pd \frak L_{\Bbb Dz}^2$ for $z\in \partial \Omega $, where $\Bbb D=\{\lambda \in \Bbb C\:|\lambda |1\}$.
We solve the following Dirichlet problem on the bounded balanced domain $\Omega $ with some additional properties: For $p>0$ and a positive lower semi-continuous function $u$ on $\partial \Omega $ with $u(z)=u(\lambda z)$ for $|\lambda |=1$, $z\in \partial \Omega $ we construct a holomorphic function $f\in \Bbb O(\Omega )$ such that $u(z)=\int _{\Bbb Dz}|f|^pd \frak L_{\Bbb Dz}^2$ for $z\in \partial \Omega $, where $\Bbb D=\{\lambda \in \Bbb C\:|\lambda |1\}$.
Classification : 30B30, 30D60
Keywords: boundary behavior of holomorphic functions; exceptional sets; boundary functions; Dirichlet problem; Radon inversion problem
@article{CMJ_2009_59_2_a6,
     author = {Kot, Piotr},
     title = {Boundary functions on a bounded balanced domain},
     journal = {Czechoslovak Mathematical Journal},
     pages = {371--379},
     year = {2009},
     volume = {59},
     number = {2},
     mrnumber = {2532382},
     zbl = {1224.30005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a6/}
}
TY  - JOUR
AU  - Kot, Piotr
TI  - Boundary functions on a bounded balanced domain
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 371
EP  - 379
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a6/
LA  - en
ID  - CMJ_2009_59_2_a6
ER  - 
%0 Journal Article
%A Kot, Piotr
%T Boundary functions on a bounded balanced domain
%J Czechoslovak Mathematical Journal
%D 2009
%P 371-379
%V 59
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a6/
%G en
%F CMJ_2009_59_2_a6
Kot, Piotr. Boundary functions on a bounded balanced domain. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 371-379. http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a6/

[1] Globevnik, J.: Holomorphic functions which are highly nonintegrable at the boundary. Isr. J. Math. 115 (2000), 195-203. | DOI | MR | Zbl

[2] Jakóbczak, P.: The exceptional sets for functions from the Bergman space. Port. Math. 50 (1993), 115-128. | MR

[3] Jakóbczak, P.: Highly non-integrable functions in the unit ball. Isr. J. Math. 97 (1997), 175-181. | DOI | MR

[4] Jakóbczak, P.: Exceptional sets of slices for functions from the Bergman space in the ball. Can. Math. Bull. 44 (2001), 150-159. | DOI | MR

[5] Kot, P.: Description of simple exceptional sets in the unit ball. Czech. Math. J. 54 (2004), 55-63. | DOI | MR | Zbl

[6] Kot, P.: Boundary functions in $L^2H(\Bbb B^n)$. Czech. Math. J. 57 (2007), 29-47. | DOI | MR

[7] Kot, P.: Homogeneous polynomials on strictly convex domains. Proc. Am. Math. Soc. 135 (2007), 3895-3903. | DOI | MR | Zbl

[8] Kot, P.: Bounded holomorphic functions with given maximum modulus on all circles. Proc. Amer. Math. Soc 137 (2009), 179-187. | DOI | MR | Zbl