Keywords: boundary behavior of holomorphic functions; exceptional sets; boundary functions; Dirichlet problem; Radon inversion problem
@article{CMJ_2009_59_2_a6,
author = {Kot, Piotr},
title = {Boundary functions on a bounded balanced domain},
journal = {Czechoslovak Mathematical Journal},
pages = {371--379},
year = {2009},
volume = {59},
number = {2},
mrnumber = {2532382},
zbl = {1224.30005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a6/}
}
Kot, Piotr. Boundary functions on a bounded balanced domain. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 371-379. http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a6/
[1] Globevnik, J.: Holomorphic functions which are highly nonintegrable at the boundary. Isr. J. Math. 115 (2000), 195-203. | DOI | MR | Zbl
[2] Jakóbczak, P.: The exceptional sets for functions from the Bergman space. Port. Math. 50 (1993), 115-128. | MR
[3] Jakóbczak, P.: Highly non-integrable functions in the unit ball. Isr. J. Math. 97 (1997), 175-181. | DOI | MR
[4] Jakóbczak, P.: Exceptional sets of slices for functions from the Bergman space in the ball. Can. Math. Bull. 44 (2001), 150-159. | DOI | MR
[5] Kot, P.: Description of simple exceptional sets in the unit ball. Czech. Math. J. 54 (2004), 55-63. | DOI | MR | Zbl
[6] Kot, P.: Boundary functions in $L^2H(\Bbb B^n)$. Czech. Math. J. 57 (2007), 29-47. | DOI | MR
[7] Kot, P.: Homogeneous polynomials on strictly convex domains. Proc. Am. Math. Soc. 135 (2007), 3895-3903. | DOI | MR | Zbl
[8] Kot, P.: Bounded holomorphic functions with given maximum modulus on all circles. Proc. Amer. Math. Soc 137 (2009), 179-187. | DOI | MR | Zbl