Comparison theorems for the third order trinomial differential equations with delay argument
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 353-370 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study asymptotic properties of the third order trinomial delay differential equation $$ y'''(t)-p(t)y'(t)+g(t)y(\tau (t))= 0 $$ by transforming this equation to the binomial canonical equation. The results obtained essentially improve known results in the literature. On the other hand, the set of comparison principles obtained permits to extend immediately asymptotic criteria from ordinary to delay equations.
In this paper we study asymptotic properties of the third order trinomial delay differential equation $$ y'''(t)-p(t)y'(t)+g(t)y(\tau (t))= 0 $$ by transforming this equation to the binomial canonical equation. The results obtained essentially improve known results in the literature. On the other hand, the set of comparison principles obtained permits to extend immediately asymptotic criteria from ordinary to delay equations.
Classification : 34C10
Keywords: comparison theorem; property (A); canonical operator
@article{CMJ_2009_59_2_a5,
     author = {D\v{z}urina, Jozef and Kotorov\'a, Ren\'ata},
     title = {Comparison theorems for the third order trinomial differential equations with delay argument},
     journal = {Czechoslovak Mathematical Journal},
     pages = {353--370},
     year = {2009},
     volume = {59},
     number = {2},
     mrnumber = {2532381},
     zbl = {1224.34251},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a5/}
}
TY  - JOUR
AU  - Džurina, Jozef
AU  - Kotorová, Renáta
TI  - Comparison theorems for the third order trinomial differential equations with delay argument
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 353
EP  - 370
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a5/
LA  - en
ID  - CMJ_2009_59_2_a5
ER  - 
%0 Journal Article
%A Džurina, Jozef
%A Kotorová, Renáta
%T Comparison theorems for the third order trinomial differential equations with delay argument
%J Czechoslovak Mathematical Journal
%D 2009
%P 353-370
%V 59
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a5/
%G en
%F CMJ_2009_59_2_a5
Džurina, Jozef; Kotorová, Renáta. Comparison theorems for the third order trinomial differential equations with delay argument. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 353-370. http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a5/

[1] Bellman, R.: Stability theory of differential equations. New York-London McGraw-Hill Book Company, XIII (1953). | MR | Zbl

[2] Chanturia, T. A., Kiguradze, I. T.: Asymptotic properties of solutions of nonautonomous ordinary differential equations. (1990), Nauka Moscow Russian.

[3] Džurina, J.: Asymptotic properties of the third order delay differential equations. Nonlinear Analysis 26 (1996), 33-39. | DOI | MR

[4] Džurina, J.: Comparison theorems for functional differential equations. (2002), EDIS Zilina.

[5] Džurina, J.: Comparison theorems for nonlinear ODE's. Math. Slovaca 42 (1992), 299-315. | MR | Zbl

[6] Džurina, J.: Asymptotic properties of third-order differential equations with deviating argument. Czech. Math. J. 44 (1994), 163-172. | MR

[7] Džurina, J.: Asymptotic properties of third order delay differential equations. Czech. Math. J. 45 (1995), 443-448. | MR

[8] Erbe, L.: Existence of oscillatory solutions and asymptotic behavior for a class of third order linear differential equation. (1976), 64 Pacific J. Math. | MR

[9] Hartman, P.: Ordinary differential equations. (1964), John Wiley & sons New York-London-Sydney. | MR | Zbl

[10] Jones, G. D.: An asymptotic property of solutions $y'''+p(x)y'+q(x)y=0$. (1973),47 Pacific J. Math. | MR

[11] Kiguradze, I. T.: On the oscillation of solutions of the equation $\frac{ d^mu}{ dt^m} + a(t)|u|^n\* sign u = 0$. (1964), 65 Mat. Sb. Russian. | Zbl

[12] Kusano, T., Naito, M.: Comparison theorems for functional differential equations with deviating arguments. (1981), 3 J. Math. Soc. Japan. | MR | Zbl

[13] Kusano, T., Naito, M., Tanaka, K.: Oscillatory and asymptotic behavior of solutions of a class of linear ordinary differential equations. (1981), 90 Proc. Roy. Soc. Edinburg. | MR

[14] Lazer, A. C.: The behavior of solutions of the differential equation $y'''+p(x)y'+q(x)y=0$. (1966),17 Pacific J. Math. | MR | Zbl

[15] Mahfoud, W. E.: Comparison theorems for delay differential equations. Pacific J. Math. 83 (1979), 187-197. | DOI | MR | Zbl

[16] Parhi, N., Padhi, S.: On asymptotic behaviour of delay differential equations of third order. 391-403 34 (1998), Nonlin. Anal. | DOI | MR

[17] Škerlík, A.: Integral criteria of oscillation for the third order linear differential equations. Math. Slovaca 45 (1995), 403-412. | MR

[18] Trench, W. F.: Canonical forms and principal systems for general disconjugate equations. (1974), 189 Trans. Amer. Math. Soc. | DOI | MR | Zbl

[19] Trench, W. F.: Eventual disconjugacy of linear differential equation. (1983), 83 Proc. Amer. Math. Soc. | MR