Keywords: anti-de Sitter space; $k$th mean curvature; Gauss equations
@article{CMJ_2009_59_2_a4,
author = {Wei, Guoxin and Liu, Qiuli and Suh, Young Jin},
title = {Integral formulas for closed spacelike hypersurfaces in anti-de {Sitter} space $H_1^{n+1}(-1)$},
journal = {Czechoslovak Mathematical Journal},
pages = {343--351},
year = {2009},
volume = {59},
number = {2},
mrnumber = {2532379},
zbl = {1224.53038},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a4/}
}
TY - JOUR
AU - Wei, Guoxin
AU - Liu, Qiuli
AU - Suh, Young Jin
TI - Integral formulas for closed spacelike hypersurfaces in anti-de Sitter space $H_1^{n+1}(-1)$
JO - Czechoslovak Mathematical Journal
PY - 2009
SP - 343
EP - 351
VL - 59
IS - 2
UR - http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a4/
LA - en
ID - CMJ_2009_59_2_a4
ER -
%0 Journal Article
%A Wei, Guoxin
%A Liu, Qiuli
%A Suh, Young Jin
%T Integral formulas for closed spacelike hypersurfaces in anti-de Sitter space $H_1^{n+1}(-1)$
%J Czechoslovak Mathematical Journal
%D 2009
%P 343-351
%V 59
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a4/
%G en
%F CMJ_2009_59_2_a4
Wei, Guoxin; Liu, Qiuli; Suh, Young Jin. Integral formulas for closed spacelike hypersurfaces in anti-de Sitter space $H_1^{n+1}(-1)$. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 343-351. http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a4/
[1] Calabi, E.: Examples of Bernstein problems for nonlinear equations. Proc. Symp. Pure Math. 15 (1970), 223-230. | MR
[2] Cao, L., Wei, G.: A new characterization of hyperbolic cylinder in anti de Sitter space $H^{n+1}_1(-1)$. J. Math. Anal. Appl. 329 (2007), 408-414. | DOI | MR | Zbl
[3] Cheng, S. Y., Yau, S. T.: Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces. Ann. Math. 104 (1976), 407-419. | DOI | MR | Zbl
[4] Hu, Z., Scherfner, M., Zhai, S.: On spacelike hypersurfaces with constant scalar curvature in the de Sitter space. Differ. Geom. Appl. 25 (2007), 594-611. | DOI | MR | Zbl
[5] Ishihara, T.: Maximal spacelike submanifolds of a pseudo-Riemannian space of constant curvature. Mich. Math. J. 35 (1988), 345-352. | DOI | MR | Zbl
[6] Li, H.: Hypersurfaces with constant scalar curvature in space forms. Math. Ann. 305 (1996), 665-672. | DOI | MR | Zbl
[7] Li, H.: Global rigidity theorems of hypersurfaces. Ark. Mat. 35 (1997), 327-351. | DOI | MR | Zbl
[8] Omori, H.: Isometric immersions of Riemannian manifolds. J. Math. Soc. Japan. 19 (1967), 205-214. | DOI | MR | Zbl
[9] Otsuki, T.: Minimal hypersurfaces in a Riemannian manifold of constant curvature. Am. J. Math. 92 (1970), 145-173. | DOI | MR | Zbl
[10] Perdomo, O.: Rigidity of minimal hypersurfaces of spheres with two principal curvatures. Arch. Math. 82 (2004), 180-184. | DOI | MR | Zbl
[11] Wang, Q. L.: Rigidity of Clifford minimal hypersurfaces. Monatsh. Math. 140 (2003), 163-167. | DOI | MR | Zbl
[12] Wei, G. X.: Rigidity theorem for hypersurfaces in a unit sphere. Monatsh. Math. 149 (2006), 343-350. | DOI | MR | Zbl