Optimal control of linear stochastic evolution equations in Hilbert spaces and uniform observability
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 317-342 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study the existence of the optimal (minimizing) control for a tracking problem, as well as a quadratic cost problem subject to linear stochastic evolution equations with unbounded coefficients in the drift. The backward differential Riccati equation (BDRE) associated with these problems (see \cite {chen}, for finite dimensional stochastic equations or \cite {UC}, for infinite dimensional equations with bounded coefficients) is in general different from the conventional BDRE (see \cite {1990}, \cite {ukl}). Under stabilizability and uniform observability conditions and assuming that the control weight-costs are uniformly positive, we establish that BDRE has a unique, uniformly positive, bounded on ${\mathbf R}_{+}$ and stabilizing solution. Using this result we find the optimal control and the optimal cost. It is known \cite {ukl} that uniform observability does not imply detectability and consequently our results are different from those obtained under detectability conditions (see \cite {1990}).
In this paper we study the existence of the optimal (minimizing) control for a tracking problem, as well as a quadratic cost problem subject to linear stochastic evolution equations with unbounded coefficients in the drift. The backward differential Riccati equation (BDRE) associated with these problems (see \cite {chen}, for finite dimensional stochastic equations or \cite {UC}, for infinite dimensional equations with bounded coefficients) is in general different from the conventional BDRE (see \cite {1990}, \cite {ukl}). Under stabilizability and uniform observability conditions and assuming that the control weight-costs are uniformly positive, we establish that BDRE has a unique, uniformly positive, bounded on ${\mathbf R}_{+}$ and stabilizing solution. Using this result we find the optimal control and the optimal cost. It is known \cite {ukl} that uniform observability does not imply detectability and consequently our results are different from those obtained under detectability conditions (see \cite {1990}).
Classification : 49K45, 93E20
Keywords: Riccati equation; stochastic uniform observability; stabilizability; quadratic control; tracking problem
@article{CMJ_2009_59_2_a3,
     author = {Ungureanu, Viorica Mariela},
     title = {Optimal control of linear stochastic evolution equations in {Hilbert} spaces and uniform observability},
     journal = {Czechoslovak Mathematical Journal},
     pages = {317--342},
     year = {2009},
     volume = {59},
     number = {2},
     mrnumber = {2532378},
     zbl = {1224.93135},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a3/}
}
TY  - JOUR
AU  - Ungureanu, Viorica Mariela
TI  - Optimal control of linear stochastic evolution equations in Hilbert spaces and uniform observability
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 317
EP  - 342
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a3/
LA  - en
ID  - CMJ_2009_59_2_a3
ER  - 
%0 Journal Article
%A Ungureanu, Viorica Mariela
%T Optimal control of linear stochastic evolution equations in Hilbert spaces and uniform observability
%J Czechoslovak Mathematical Journal
%D 2009
%P 317-342
%V 59
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a3/
%G en
%F CMJ_2009_59_2_a3
Ungureanu, Viorica Mariela. Optimal control of linear stochastic evolution equations in Hilbert spaces and uniform observability. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 317-342. http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a3/

[1] Barbu, V., Prato, G. Da: Hamilton Jacobi Equations in Hilbert Spaces. Research Notes in Mathematics, 86. Boston-London-Melbourne: Pitman Advanced Publishing Program (1983). | MR | Zbl

[2] Chen, S., Zhou, Xun YU: Stochastic linear quadratic regulators with indefinite control weight costs. II. SIAM J. Control Optimization 39 1065-1081 (2000). | DOI | MR | Zbl

[3] Curtain, R., Pritchard, J.: Infinite Dimensional Linear Systems Theory. Lecture Notes in Control and Information Sciences. 8. Berlin-Heidelberg-New York: Springer-Verlag. VII (1978). | MR | Zbl

[4] Curtain, R., Falb, P.: Ito's Lemma in infinite dimensions. J. Math. Anal. Appl. 31 434-448 (1970). | DOI | MR | Zbl

[5] Dragan, V., Morozan, T.: Stochastic observability and applications. IMA J. Math. Control Inf. 21 323-344 (2004). | DOI | MR | Zbl

[6] Grecksch, W., Tudor, C.: Stochastic Evolution Equations. A Hilbert Space Approach. Mathematical Research. 85. Berlin: Akademie Verlag (1995). | MR | Zbl

[7] Douglas, R.: Banach Algebra Techniques in Operator Theory. Pure and Applied Mathematics, 49. New York-London: Academic Press. XVI (1972). | MR | Zbl

[8] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences 44, Springer-Verlag, Berlin, New York (1983). | MR | Zbl

[9] Prato, G. Da: Quelques résultats d'existence, unicité et régularité pour une problème de la théorie du contrôle. J. Math. Pures et Appl. 52 (1973), 353-375. | MR

[10] Prato, G. Da, Ichikawa, A.: Quadratic control for linear time-varying systems. SIAM. J. Control and Optimization 28 359-381 (1990). | DOI | MR | Zbl

[11] Prato, G. Da, Zabczyc, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications. 44. Cambridge, Cambridge University Press. xviii (1992). | MR

[12] Prato, G. Da, Ichikawa, A.: Quadratic control for linear periodic systems. Appl. Math. Optimization 18 39-66 (1988). | DOI | MR | Zbl

[13] Prato, G. Da, Ichikawa, A.: Lyapunov equations for time-varying linear systems. Syst. Control Lett. 9 165-172 (1987). | DOI | MR | Zbl

[14] Pritchard, A. J., Zabczyc, J.: Stability and Stabilizability of Infinite Dimensional Systems. SIAM Rev. 23 25-52 (1981). | DOI | MR

[15] Morozan, T.: Stochastic uniform observability and Riccati equations of stochastic control. Rev. Roum. Math. Pures Appl. 38 771-781 (1993). | MR | Zbl

[16] Morozan, T.: On the Riccati Equation of Stochastic Control. Optimization, optimal control and partial differential equations. Proc. 1st Fr.-Rom. Conf., Iasi/Rom. (1992).

[17] Morozan, T.: Linear quadratic, control and tracking problems for time-varying stochastic differential systems perturbed by a Markov chain. Rev. Roum. Math. Pures Appl. 46 783-804 (2001). | MR | Zbl

[18] Ungureanu, V. M.: Riccati equation of stochastic control and stochastic uniform observability in infinite dimensions. Barbu, Viorel (ed.) et al., Analysis and optimization of differential systems. IFIP TC7/WG 7.2 international working conference, Constanta, Romania, September 10-14, 2002. Boston, MA: Kluwer Academic Publishers 421-432 (2003). | MR | Zbl

[19] Ungureanu, V. M.: Uniform exponential stability for linear discrete time systems with stochastic perturbations in Hilbert spaces. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. 7 757-772 (2004). | MR

[20] Ungureanu, V. M.: Representations of mild solutions of time-varying linear stochastic equations and the exponential stability of periodic systems. Electron. J. Qual. Theory Differ. Equ. 2004, Paper No. 4, 22 p. (2004). | MR | Zbl

[21] Ungureanu, V. M.: Cost of tracking for differential stochastic equations in Hilbert spaces. Stud. Univ. Babeş-Bolyai, Math. 50 73-81 (2005). | MR | Zbl

[22] Ungureanu, V. M.: Stochastic uniform observability of linear differential equations with multiplicative noise. J. Math. Anal. Appl. 343 446-463 (2008). | DOI | MR | Zbl

[23] Ungureanu, V. M.: Stochastic uniform observability of general linear differential equations. Dynamical Systems 23 333-350 (2008). | DOI | MR | Zbl

[24] Tudor, C.: Optimal control for an infinite-dimensional periodic problem under white noise perturbations. SIAM J. Control Optimization 28 253-264 (1990). | DOI | MR | Zbl

[25] Yosida, K.: Functional analysis. 6th ed. Grundlehren der mathematischen Wissenschaften, 123. Berlin-Heidelberg-New York: Springer-Verlag. XII (1980). | MR | Zbl