Keywords: ${\rm KC}$-space; strongly ${\rm KC}$-space; ${\rm FDS}$-property; maximal (countably) compact
@article{CMJ_2009_59_2_a2,
author = {Sun, Weihua and Xu, Yuming and Li, Ning},
title = {On minimal strongly {KC-spaces}},
journal = {Czechoslovak Mathematical Journal},
pages = {305--316},
year = {2009},
volume = {59},
number = {2},
mrnumber = {2532377},
zbl = {1224.54011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a2/}
}
Sun, Weihua; Xu, Yuming; Li, Ning. On minimal strongly KC-spaces. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 305-316. http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a2/
[1] Alas, O. T., Tkachenko, M. G., Tkachuk, V. V., Wilson, R. G.: The ${\rm FDS}$-property and spaces in which compact sets are closed. Sci. Math. Jap. 61 (2005), 473-480. | MR
[2] Alas, O. T., Wilson, R. G.: Spaces in which compact subsets are closed and the lattice of $\rm T_1$-topologies on a set. Commentat. Math. Univ. Carol. 43 (2002), 641-652. | MR
[3] Cameron, D. E.: Maximal and minimal topologies. Trans. Amer. Math. Soc. 160 (1971), 229-248. | DOI | MR | Zbl
[4] Engelking, R.: General Topology. PWN Warszawa (1977). | MR | Zbl
[5] Fleissner, W. G.: A $T_B$-space which is not Katětov $T_B$. Rocky Mt. J. Math. 10 (1980), 661-663. | DOI | MR | Zbl
[6] Kelley, J. L.: General Topology. Springer New York (1975). | MR | Zbl
[7] Kunen, K., Vaughan, J. E.: Handbook of Set-Theoretic Topology. North Holland Amsterdam-New York-Oxford (1984). | MR | Zbl
[8] Kunzi, H.-P. A., Zypen, D. van der: Maximal (sequentially) compact topologies. In: Proc. North-West Eur. categ. sem., Berlin, Germany, March 28-29, 2003 World Scientific River Edge (2004), 173-187. | MR
[9] Larson, R.: Complementary topological properties. Notices Am. Math. Soc. 20 (1973), 176.
[10] Smythe, N., Wilkins, C. A.: Minimal Hausdorff and maximal compact spaces. J. Austr. Math. Soc. 3 (1963), 167-171. | DOI | MR | Zbl
[11] Vidalis, T.: Minimal ${\rm KC}$-spaces are countably compact. Commentat. Math. Univ. Carol. 45 (2004), 543-547. | MR
[12] Wilansky, A.: Between $\rm T_1$ and $\rm T_2$. Am. Math. Mon. 74 (1967), 261-266. | MR