On minimal strongly KC-spaces
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 305-316 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this article we introduce the notion of strongly ${\rm KC}$-spaces, that is, those spaces in which countably compact subsets are closed. We find they have good properties. We prove that a space $(X, \tau )$ is maximal countably compact if and only if it is minimal strongly ${\rm KC}$, and apply this result to study some properties of minimal strongly ${\rm KC}$-spaces, some of which are not possessed by minimal ${\rm KC}$-spaces. We also give a positive answer to a question proposed by O. T. Alas and R. G. Wilson, who asked whether every countably compact ${\rm KC}$-space of cardinality less than $c$ has the ${\rm FDS }$-property. Using this we obtain a characterization of Katětov strongly ${\rm KC}$-spaces and finally, we generalize one result of Alas and Wilson on Katětov-${\rm KC}$ spaces.
In this article we introduce the notion of strongly ${\rm KC}$-spaces, that is, those spaces in which countably compact subsets are closed. We find they have good properties. We prove that a space $(X, \tau )$ is maximal countably compact if and only if it is minimal strongly ${\rm KC}$, and apply this result to study some properties of minimal strongly ${\rm KC}$-spaces, some of which are not possessed by minimal ${\rm KC}$-spaces. We also give a positive answer to a question proposed by O. T. Alas and R. G. Wilson, who asked whether every countably compact ${\rm KC}$-space of cardinality less than $c$ has the ${\rm FDS }$-property. Using this we obtain a characterization of Katětov strongly ${\rm KC}$-spaces and finally, we generalize one result of Alas and Wilson on Katětov-${\rm KC}$ spaces.
Classification : 54A10, 54D25, 54D55
Keywords: ${\rm KC}$-space; strongly ${\rm KC}$-space; ${\rm FDS}$-property; maximal (countably) compact
@article{CMJ_2009_59_2_a2,
     author = {Sun, Weihua and Xu, Yuming and Li, Ning},
     title = {On minimal strongly {KC-spaces}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {305--316},
     year = {2009},
     volume = {59},
     number = {2},
     mrnumber = {2532377},
     zbl = {1224.54011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a2/}
}
TY  - JOUR
AU  - Sun, Weihua
AU  - Xu, Yuming
AU  - Li, Ning
TI  - On minimal strongly KC-spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 305
EP  - 316
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a2/
LA  - en
ID  - CMJ_2009_59_2_a2
ER  - 
%0 Journal Article
%A Sun, Weihua
%A Xu, Yuming
%A Li, Ning
%T On minimal strongly KC-spaces
%J Czechoslovak Mathematical Journal
%D 2009
%P 305-316
%V 59
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a2/
%G en
%F CMJ_2009_59_2_a2
Sun, Weihua; Xu, Yuming; Li, Ning. On minimal strongly KC-spaces. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 305-316. http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a2/

[1] Alas, O. T., Tkachenko, M. G., Tkachuk, V. V., Wilson, R. G.: The ${\rm FDS}$-property and spaces in which compact sets are closed. Sci. Math. Jap. 61 (2005), 473-480. | MR

[2] Alas, O. T., Wilson, R. G.: Spaces in which compact subsets are closed and the lattice of $\rm T_1$-topologies on a set. Commentat. Math. Univ. Carol. 43 (2002), 641-652. | MR

[3] Cameron, D. E.: Maximal and minimal topologies. Trans. Amer. Math. Soc. 160 (1971), 229-248. | DOI | MR | Zbl

[4] Engelking, R.: General Topology. PWN Warszawa (1977). | MR | Zbl

[5] Fleissner, W. G.: A $T_B$-space which is not Katětov $T_B$. Rocky Mt. J. Math. 10 (1980), 661-663. | DOI | MR | Zbl

[6] Kelley, J. L.: General Topology. Springer New York (1975). | MR | Zbl

[7] Kunen, K., Vaughan, J. E.: Handbook of Set-Theoretic Topology. North Holland Amsterdam-New York-Oxford (1984). | MR | Zbl

[8] Kunzi, H.-P. A., Zypen, D. van der: Maximal (sequentially) compact topologies. In: Proc. North-West Eur. categ. sem., Berlin, Germany, March 28-29, 2003 World Scientific River Edge (2004), 173-187. | MR

[9] Larson, R.: Complementary topological properties. Notices Am. Math. Soc. 20 (1973), 176.

[10] Smythe, N., Wilkins, C. A.: Minimal Hausdorff and maximal compact spaces. J. Austr. Math. Soc. 3 (1963), 167-171. | DOI | MR | Zbl

[11] Vidalis, T.: Minimal ${\rm KC}$-spaces are countably compact. Commentat. Math. Univ. Carol. 45 (2004), 543-547. | MR

[12] Wilansky, A.: Between $\rm T_1$ and $\rm T_2$. Am. Math. Mon. 74 (1967), 261-266. | MR