@article{CMJ_2009_59_2_a16,
author = {K\"ammerling, Karsten and Volkmann, Lutz},
title = {The $k$-domatic number of a graph},
journal = {Czechoslovak Mathematical Journal},
pages = {539--550},
year = {2009},
volume = {59},
number = {2},
mrnumber = {2532389},
zbl = {1224.05372},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a16/}
}
Kämmerling, Karsten; Volkmann, Lutz. The $k$-domatic number of a graph. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 539-550. http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a16/
[1] Cockayne, E. J., Hedetniemi, S. T.: Towards a theory of domination in graphs. Networks 7 (1977), 247-261. | DOI | MR
[2] Fink, J. F., Jacobson, M. S.: $n$-domination in graphs. Graph Theory with Applications to Algorithms and Computer Science. John Wiley and Sons, New York (1985) 282-300. | MR | Zbl
[3] Fink, J. F., Jacobson, M. S.: On $n$-domination, $n$-dependence and forbidden subgraphs. Graph Theory with Applications to Algorithms and Computer Science. John Wiley and Sons, New York (1985) 301-311. | MR | Zbl
[4] Haynes, T. W., Hedetniemi, S. T., Slater, P. J.: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998) 233-269. | MR | Zbl
[5] Haynes, T. W., Hedetniemi, S. T., (eds.), P. J. Slater: Domination in Graphs: Advanced Topics. Marcel Dekker, New York (1998). | MR | Zbl
[6] Zelinka, B.: Domatic number and degrees of vertices of a graph. Math. Slovaca 33 (1983) 145-147. | MR | Zbl
[7] Zelinka, B.: Domatic numbers of graphs and their variants: A survey. Marcel Dekker, New York (1998), 351-374. | MR | Zbl
[8] Zelinka, B.: On k-ply domatic numbers of graphs. Math. Slovaca 34 (1984) 313-318. | MR | Zbl