On potentially nilpotent double star sign patterns
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 489-501 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A matrix $\Cal A$ whose entries come from the set $\{+,-,0\}$ is called a {\it sign pattern matrix}, or {\it sign pattern}. A sign pattern is said to be potentially nilpotent if it has a nilpotent realization. In this paper, the characterization problem for some potentially nilpotent double star sign patterns is discussed. A class of double star sign patterns, denoted by ${\cal DSSP}(m,2)$, is introduced. We determine all potentially nilpotent sign patterns in ${\cal DSSP}(3,2)$ and ${\cal DSSP}(5,2)$, and prove that one sign pattern in ${\cal DSSP}(3,2)$ is potentially stable.
A matrix $\Cal A$ whose entries come from the set $\{+,-,0\}$ is called a {\it sign pattern matrix}, or {\it sign pattern}. A sign pattern is said to be potentially nilpotent if it has a nilpotent realization. In this paper, the characterization problem for some potentially nilpotent double star sign patterns is discussed. A class of double star sign patterns, denoted by ${\cal DSSP}(m,2)$, is introduced. We determine all potentially nilpotent sign patterns in ${\cal DSSP}(3,2)$ and ${\cal DSSP}(5,2)$, and prove that one sign pattern in ${\cal DSSP}(3,2)$ is potentially stable.
Classification : 05C50, 15A18
Keywords: sign pattern; double star; potentially nilpotent; potentially stable
@article{CMJ_2009_59_2_a13,
     author = {Li, Honghai and Li, Jiongsheng},
     title = {On potentially nilpotent double star sign patterns},
     journal = {Czechoslovak Mathematical Journal},
     pages = {489--501},
     year = {2009},
     volume = {59},
     number = {2},
     mrnumber = {2532386},
     zbl = {1224.05303},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a13/}
}
TY  - JOUR
AU  - Li, Honghai
AU  - Li, Jiongsheng
TI  - On potentially nilpotent double star sign patterns
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 489
EP  - 501
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a13/
LA  - en
ID  - CMJ_2009_59_2_a13
ER  - 
%0 Journal Article
%A Li, Honghai
%A Li, Jiongsheng
%T On potentially nilpotent double star sign patterns
%J Czechoslovak Mathematical Journal
%D 2009
%P 489-501
%V 59
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a13/
%G en
%F CMJ_2009_59_2_a13
Li, Honghai; Li, Jiongsheng. On potentially nilpotent double star sign patterns. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 489-501. http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a13/

[1] Bone, T.: Positive feedback may sometimes promote stability. Linear Algebra Appl. 51 (1983),143-151. | MR | Zbl

[2] Drew, J. H., Johnson, C. R., Olesky, D. D.: P. van den Driessche, Spectrally arbitrary patterns. Linear Algebra Appl. 308 (2000), 121-137. | MR

[3] Eschenbach, C. A., Li, Z.: Potentially nilpotent sign pattern matrices. Linear Algebra Appl. 299 (1999), 81-99. | MR | Zbl

[4] Johnson, C. R., Summers, T. S.: The potentially stable tree sign patterns for dimensions less than five. Linear Algebra Appl. 126 (1989), 1-13. | MR | Zbl

[5] MacGillivray, G., Tifenbach, R. M., Driessche, P. van den: Spectrally arbitrary star sign patterns. Linear Algebra Appl. 400 (2005), 99-119. | MR

[6] Yeh, L.: Sign pattern matrices that allow a nilpotent matrix. Bull. Aust. Math. Soc. 53 (1996), 189-196. | DOI | MR | Zbl