Keywords: graph; degree sequence; potentially $C_r$-graphic sequence
@article{CMJ_2009_59_2_a12,
author = {Yin, Jian-Hua},
title = {Degree sequences of graphs containing a cycle with prescribed length},
journal = {Czechoslovak Mathematical Journal},
pages = {481--487},
year = {2009},
volume = {59},
number = {2},
mrnumber = {2532385},
zbl = {1224.05107},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a12/}
}
Yin, Jian-Hua. Degree sequences of graphs containing a cycle with prescribed length. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 481-487. http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a12/
[1] Berge, C.: Graphs and Hypergraphs. North Holland Amsterdam (1973). | MR | Zbl
[2] Erdős, P., Gallai, T.: Graphs with given degrees of vertices. Math. Lapok 11 (1960), 264-274.
[3] Fulkerson, D. R., Hoffman, A. J., Mcandrew, M. H.: Some properties of graphs with multiple edges. Canad. J. Math. 17 (1965), 166-177. | DOI | MR | Zbl
[4] Gould, R. J., Jacobson, M. S., Lehel, J.: Potentially $G$-graphical degree sequences. In: Combinatorics, Graph Theory, and Algorithms, Vol. 1 Y. Alavi et al. New Issues Press Kalamazoo Michigan (1999), 451-460. | MR
[5] Kézdy, A. E., Lehel, J.: Degree sequences of graphs with prescribed clique size. In: Combinatorics, Graph Theory, and Algorithms, Vol. 2 Y. Alavi New Issues Press Kalamazoo Michigan (1999), 535-544. | MR
[6] Lai, C.: The smallest degree sum that yields potentially $C_k$-graphical sequences. J. Combin. Math. Combin. Comput. 49 (2004), 57-64. | MR | Zbl
[7] Rao, A. R.: The clique number of a graph with given degree sequence. Graph Theory, Proc. Symp. Calcutta 1976, ISI Lecture Notes 4 A. R. Rao (1979), 251-267.
[8] Rao, A. R.: An Erdős-Gallai type result on the clique number of a realization of a degree sequence. Unpublished.