@article{CMJ_2009_59_2_a11,
author = {Chen, Wei and Zhao, Xianzhong},
title = {The structure of idempotent residuated chains},
journal = {Czechoslovak Mathematical Journal},
pages = {453--479},
year = {2009},
volume = {59},
number = {2},
mrnumber = {2532384},
zbl = {1224.06025},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a11/}
}
Chen, Wei; Zhao, Xianzhong. The structure of idempotent residuated chains. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 453-479. http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a11/
[1] Stanovský, D.: Commutative idempotent residuated lattices. Czech. Math. J. 57 (2007), 191-200. | DOI | MR
[2] Galatos, N.: Minimal varieties of residuated lattices. Algebra Universal. 52 (2004), 215-239. | DOI | MR | Zbl
[3] Jipsen, P., Tsinakis, C.: A survey of residuated lattices. Ordered Algebraic Structures (J. Martinez, ed.), Kluwer Academic Publishers, Dordrecht (2002), 19-56. | MR | Zbl
[4] Bahls, P., Cole, J., Galatos, N., Jipsen, P., Tsinakis, C.: Cancellative residuated lattices. Algebra Universal. 50 (2003), 83-106. | DOI | MR | Zbl
[5] Blount, K., Tsinakis, C.: The structure of residuated lattices. Internat. J. Algebra Comput. 13 (2003), 437-461. | DOI | MR | Zbl
[6] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra. GTM78, Springer (1981). | MR | Zbl
[7] Howie, J. M.: Fundamentals of Semigroup Theory. London Mathematical Society Monographs, New series, Vol. 12, Oxford Univ Press, New York (1995). | MR | Zbl