Keywords: analogue of Wiener measure; Cameron-Martin translation theorem; conditional analytic Feynman $w_\varphi $-integral; conditional Wiener integral; Kac-Feynman formula; simple formula for conditional $w_\varphi $-integral
@article{CMJ_2009_59_2_a10,
author = {Cho, Dong Hyun},
title = {A simple formula for an analogue of conditional {Wiener} integrals and its applications. {II}},
journal = {Czechoslovak Mathematical Journal},
pages = {431--452},
year = {2009},
volume = {59},
number = {2},
mrnumber = {2532375},
zbl = {1224.28031},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a10/}
}
Cho, Dong Hyun. A simple formula for an analogue of conditional Wiener integrals and its applications. II. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 431-452. http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a10/
[1] Ash, R. B.: Real analysis and probability. Academic Press, New York-London (1972). | MR
[2] Cameron, R. H., Martin, W. T.: Transformations of Wiener integrals under translations. Ann. Math. 45 (1944), 386-396. | DOI | MR | Zbl
[3] Cameron, R. H., Storvick, D. A.: Some Banach algebras of analytic Feynman integrable functionals. Lecture Notes in Math. 798, Springer, Berlin-New York (1980). | DOI | MR | Zbl
[4] Chang, K. S., Chang, J. S.: Evaluation of some conditional Wiener integrals. Bull. Korean Math. Soc. 21 (1984), 99-106. | MR | Zbl
[5] Cho, D. H.: A simple formula for an analogue of conditional Wiener integrals and its applications. Trans. Amer. Math. Soc. 360 (2008), 3795-3811. | DOI | MR | Zbl
[6] Chung, D. M., Skoug, D.: Conditional analytic Feynman integrals and a related Schrödinger integral equation. SIAM J. Math. Anal. 20 (1989), 950-965. | DOI | MR | Zbl
[7] Im, M. K., Ryu, K. S.: An analogue of Wiener measure and its applications. J. Korean Math. Soc. 39 (2002), 801-819. | DOI | MR | Zbl
[8] Laha, R. G., Rohatgi, V. K.: Probability theory. John Wiley & Sons, New York-Chichester-Brisbane (1979). | MR | Zbl
[9] Park, C., Skoug, D.: A simple formula for conditional Wiener integrals with applications. Pacific J. Math. 135 (1988), 381-394. | DOI | MR | Zbl
[10] Ryu, K. S., Im, M. K.: A measure-valued analogue of Wiener measure and the measure-valued Feynman-Kac formula. Trans. Amer. Math. Soc. 354 (2002), 4921-4951. | DOI | MR | Zbl
[11] Yeh, J.: Transformation of conditional Wiener integrals under translation and the Cameron-Martin translation theorem. Tôhoku Math. J. 30 (1978), 505-515. | DOI | MR | Zbl
[12] Yeh, J.: Inversion of conditional Wiener integrals. Pacific J. Math. 59 (1975), 623-638. | DOI | MR | Zbl
[13] Yeh, J.: Inversion of conditional expectations. Pacific J. Math. 52 (1974), 631-640. | DOI | MR | Zbl
[14] Yeh, J.: Stochastic processes and the Wiener integral. Marcel Dekker, New York (1973). | MR | Zbl