Keywords: existence of solution; differential inclusion; memory source term; uniform decay
@article{CMJ_2009_59_2_a1,
author = {Park, Jong Yeoul and Park, Sun Hye},
title = {Uniform decay for a hyperbolic system with differential inclusion and nonlinear memory source term on the boundary},
journal = {Czechoslovak Mathematical Journal},
pages = {287--303},
year = {2009},
volume = {59},
number = {2},
mrnumber = {2532376},
zbl = {1224.35285},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a1/}
}
TY - JOUR AU - Park, Jong Yeoul AU - Park, Sun Hye TI - Uniform decay for a hyperbolic system with differential inclusion and nonlinear memory source term on the boundary JO - Czechoslovak Mathematical Journal PY - 2009 SP - 287 EP - 303 VL - 59 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a1/ LA - en ID - CMJ_2009_59_2_a1 ER -
%0 Journal Article %A Park, Jong Yeoul %A Park, Sun Hye %T Uniform decay for a hyperbolic system with differential inclusion and nonlinear memory source term on the boundary %J Czechoslovak Mathematical Journal %D 2009 %P 287-303 %V 59 %N 2 %U http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a1/ %G en %F CMJ_2009_59_2_a1
Park, Jong Yeoul; Park, Sun Hye. Uniform decay for a hyperbolic system with differential inclusion and nonlinear memory source term on the boundary. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 287-303. http://geodesic.mathdoc.fr/item/CMJ_2009_59_2_a1/
[1] Aassila, M.: Global existence of solutions to a wave equation with damping and source terms. Diff. Int. Eqs. 14 (2001), 1301-1314. | MR | Zbl
[2] Cavalcanti, M. M.: Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation. Discrete Contin. Dynam. Systems 8 (2002), 675-695. | MR | Zbl
[3] Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Ma, T. F., Soriano, J. A.: Global existence and asymptotic stability for viscoelastic problems. Diff. Int. Eqs. 15 (2002), 731-748. | MR
[4] Gasiński, L.: Existence of solutions for hyperbolic hemivariational inequalities. J. Math. Anal. Appl. 276 (2002), 723-746. | DOI | MR
[5] Gasiński, L., Papageorgiou, N. S.: Nonlinear hemivariational inequalities at resonance. J. Math. Anal. Appl. 244 (2000), 200-213. | DOI | MR
[6] Kormornik, V., Zuazua, E.: A direct method for the boundary stabilization of the wave equation. J. Math. Pures et Appl. 69 (1990), 33-54. | MR
[7] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod-Gauthier Villars, Paris (1969). | MR | Zbl
[8] Miettinen, M.: A parabolic hemivariational inequality. Nonlinear Anal. 26 (1996), 725-734. | DOI | MR | Zbl
[9] Miettinen, M., Panagiotopoulos, P. D.: On parabolic hemivariational inequalities and applications. Nonlinear Anal. 35 (1999), 885-915. | MR | Zbl
[10] Rivera, J. E. Munoz, Salvatierra, A. P.: Asymptotic behavior of the energy in partially viscoelastic materials. Quart. Appl. Math. 59 (2001), 557-578. | DOI | MR
[11] Panagiotopoulos, P. D.: Inequality Problems in Mechanics and Applincations. Convex and Nonconvex Energy Functions, Birkhäuser, Basel, Boston (1985). | MR
[12] Panagiotopoulos,, P. D.: Hemivariational Inequalities and Applications in Mechanics and Engineering. Springer, New York (1993). | MR
[13] Park, J. Y., Bae, J. J.: On coupled wave equation of Kirchhoff type with nonlinear boundary damping and memory term. Appl. Math. Comput. 129 (2002), 87-105. | DOI | MR | Zbl
[14] Park, J. Y., Kim, H. M., Park, S. H.: On weak solutions for hyperbolic differential inclusion with discontinuous nonlinearities. Nonlinear Anal. 55 (2003), 103-113. | DOI | MR | Zbl
[15] Rauch, J.: Discontinuous semilinear differential equations and multiple valued maps. Proc. Amer. Math. Soc. 64 (1977), 277-282. | DOI | MR | Zbl