Clean matrices over commutative rings
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 145-158 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A matrix $A\in M_n(R)$ is $e$-clean provided there exists an idempotent $E\in M_n(R)$ such that $A-E\in \mathop{\rm GL}_n(R)$ and $\det E=e$. We get a general criterion of $e$-cleanness for the matrix $[[a_1,a_2,\cdots ,a_{n+1}]]$. Under the $n$-stable range condition, it is shown that $[[a_1,a_2,\cdots ,a_{n+1}]]$ is $0$-clean iff $(a_1,a_2,\cdots ,a_{n+1})=1$. As an application, we prove that the $0$-cleanness and unit-regularity for such $n\times n$ matrix over a Dedekind domain coincide for all $n\geq 3$. The analogous for $(s,2)$ property is also obtained.
A matrix $A\in M_n(R)$ is $e$-clean provided there exists an idempotent $E\in M_n(R)$ such that $A-E\in \mathop{\rm GL}_n(R)$ and $\det E=e$. We get a general criterion of $e$-cleanness for the matrix $[[a_1,a_2,\cdots ,a_{n+1}]]$. Under the $n$-stable range condition, it is shown that $[[a_1,a_2,\cdots ,a_{n+1}]]$ is $0$-clean iff $(a_1,a_2,\cdots ,a_{n+1})=1$. As an application, we prove that the $0$-cleanness and unit-regularity for such $n\times n$ matrix over a Dedekind domain coincide for all $n\geq 3$. The analogous for $(s,2)$ property is also obtained.
Classification : 15A23, 16E50
Keywords: matrix; clean element; unit-regularity
@article{CMJ_2009_59_1_a9,
     author = {Chen, Huanyin},
     title = {Clean matrices over commutative rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {145--158},
     year = {2009},
     volume = {59},
     number = {1},
     mrnumber = {2486621},
     zbl = {1224.15034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a9/}
}
TY  - JOUR
AU  - Chen, Huanyin
TI  - Clean matrices over commutative rings
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 145
EP  - 158
VL  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a9/
LA  - en
ID  - CMJ_2009_59_1_a9
ER  - 
%0 Journal Article
%A Chen, Huanyin
%T Clean matrices over commutative rings
%J Czechoslovak Mathematical Journal
%D 2009
%P 145-158
%V 59
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a9/
%G en
%F CMJ_2009_59_1_a9
Chen, Huanyin. Clean matrices over commutative rings. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 145-158. http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a9/

[1] Camillo, V. P., Khurana, D. A.: Characterization of unit regular rings. Comm. Algebra 29 (2001), 2293-2295. | DOI | MR | Zbl

[2] Camillo, V. P., Yu, H. P.: Exchange rings, units and idempotents. Comm. Algebra 22 (1994), 4737-4749. | DOI | MR | Zbl

[3] Chen, H.: Exchange rings with Artinian primitive factors. Algebr. Represent. Theory 2 (1999), 201-207. | DOI | MR | Zbl

[4] Chen, H.: Separative ideals, clean elements, and unit-regularity. Comm. Algebra 34 (2006), 911-921. | DOI | MR | Zbl

[5] Fisher, J. W., Snider, R. L.: Rings generated by their units. J. Algebra 42 (1976), 363-368. | DOI | MR | Zbl

[6] Henriksen, M.: Two classes of rings generated by their units. J. Algebra 31 (1974), 182-193. | DOI | MR | Zbl

[7] Khurana, D., Lam, T. Y.: Clean matrices and unit-regular matrices. J. Algebra 280 (2004), 683-698. | DOI | MR | Zbl

[8] Lam, T. Y.: A crash course on stable range, cancellation, substitution and exchange. J. Algebra Appl. 3 (2004), 301-343. | DOI | MR | Zbl

[9] Nicholson, W. K., Varadarjan, K.: Countable linear transformations are clean. Proc. Amer. Math. Soc. 126 (1998), 61-64. | DOI | MR

[10] Nicholson, W. K., Zhou, Y.: Clean rings: A survey, Advances in Ring Theory. Proceedings of the 4th China-Japan-Korea International Conference (2004), 181-198. | MR

[11] Raphael, R.: Rings which are generated by their units. J. Algebra 28 (1974), 199-205. | DOI | MR | Zbl

[12] Samei, K.: Clean elements in commutative reduced rings. Comm. Algebra 32 (2004), 3479-3486. | DOI | MR | Zbl