The convergence space of minimal usco mappings
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 101-128 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A convergence structure generalizing the order convergence structure on the set of Hausdorff continuous interval functions is defined on the set of minimal usco maps. The properties of the obtained convergence space are investigated and essential links with the pointwise convergence and the order convergence are revealed. The convergence structure can be extended to a uniform convergence structure so that the convergence space is complete. The important issue of the denseness of the subset of all continuous functions is also addressed.
A convergence structure generalizing the order convergence structure on the set of Hausdorff continuous interval functions is defined on the set of minimal usco maps. The properties of the obtained convergence space are investigated and essential links with the pointwise convergence and the order convergence are revealed. The convergence structure can be extended to a uniform convergence structure so that the convergence space is complete. The important issue of the denseness of the subset of all continuous functions is also addressed.
Classification : 54A05, 54C60, 54E15
Keywords: minimal usco map; convergence space; complete uniform convergence space; pointwise convergence; order convergence
@article{CMJ_2009_59_1_a7,
     author = {Anguelov, R. and Kalenda, O. F. K.},
     title = {The convergence space of minimal usco mappings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {101--128},
     year = {2009},
     volume = {59},
     number = {1},
     mrnumber = {2486619},
     zbl = {1224.54048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a7/}
}
TY  - JOUR
AU  - Anguelov, R.
AU  - Kalenda, O. F. K.
TI  - The convergence space of minimal usco mappings
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 101
EP  - 128
VL  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a7/
LA  - en
ID  - CMJ_2009_59_1_a7
ER  - 
%0 Journal Article
%A Anguelov, R.
%A Kalenda, O. F. K.
%T The convergence space of minimal usco mappings
%J Czechoslovak Mathematical Journal
%D 2009
%P 101-128
%V 59
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a7/
%G en
%F CMJ_2009_59_1_a7
Anguelov, R.; Kalenda, O. F. K. The convergence space of minimal usco mappings. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 101-128. http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a7/

[1] Anguelov, R.: Dedekind order completion of C(X) by Hausdorff continuous functions. Quaestiones Mathematicae 27 (2004), 153-170. | DOI | MR | Zbl

[2] Anguelov, R., Rosinger, E. E.: Solving Large Classes of Nonlinear Systems of PDE's. Computers and Mathematics with Applications 53 (2007), 491-507. | DOI | MR

[3] Anguelov, R., Rosinger, E. E.: Hausdorff Continuous Solutions of Nonlinear PDEs through the Order Completion Method. Quaestiones Mathematicae 28 (2005), 271-285. | DOI | MR

[4] Anguelov, R., Walt, J. H. van der: Order Convergence Structure on $C(X)$. Quaestiones Mathematicae 28 (2005), 425-457. | DOI | MR

[5] Beattie, R., Butzmann, H.-P.: Convergence structures and applications to functional analysis. Kluwer Academic Plublishers, Dordrecht, Boston, London (2002). | MR

[6] Borwein, J., Kortezov, I.: Constructive minimal uscos. C.R. Bulgare Sci 57 (2004), 9-12. | MR | Zbl

[7] Fabian, M.: Gâteaux differentiability of convex functions and topology: weak Asplund spaces. Wiley-Interscience, New York (1997). | MR | Zbl

[8] Hansell, R. W., Jayne, J. E., Talagrand, M.: First class selectors for weakly upper semi-continuous multi-valued maps in Banach spaces. J. Reine Angew. Math. 361 (1985), 201-220. | MR | Zbl

[9] Luxemburg, W. A., Zaanen, A. C.: Riesz Spaces I. North-Holland, Amsterdam, London (1971).

[10] Kalenda, O.: Stegall compact spaces which are not fragmentable. Topol. Appl. 96 (1999), 121-132. | DOI | MR | Zbl

[11] Kalenda, O.: Baire-one mappings contained in a usco map. Comment. Math. Univ. Carolinae 48 (2007), 135-145. | MR

[12] Sendov, B.: Hausdorff approximations. Kluwer Academic, Boston (1990). | MR | Zbl

[13] Spurný, J.: Banach space valued mappings of the first Baire class contained in usco mappings. Comment. Math. Univ. Carolinae 48 (2007), 269-272. | MR

[14] Srivatsa, V. V.: Baire class 1 selectors for upper semicontinuous set-valued maps. Trans. Amer. Math. Soc. 337 (1993), 609-624. | MR | Zbl