Keywords: minimal usco map; convergence space; complete uniform convergence space; pointwise convergence; order convergence
@article{CMJ_2009_59_1_a7,
author = {Anguelov, R. and Kalenda, O. F. K.},
title = {The convergence space of minimal usco mappings},
journal = {Czechoslovak Mathematical Journal},
pages = {101--128},
year = {2009},
volume = {59},
number = {1},
mrnumber = {2486619},
zbl = {1224.54048},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a7/}
}
Anguelov, R.; Kalenda, O. F. K. The convergence space of minimal usco mappings. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 101-128. http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a7/
[1] Anguelov, R.: Dedekind order completion of C(X) by Hausdorff continuous functions. Quaestiones Mathematicae 27 (2004), 153-170. | DOI | MR | Zbl
[2] Anguelov, R., Rosinger, E. E.: Solving Large Classes of Nonlinear Systems of PDE's. Computers and Mathematics with Applications 53 (2007), 491-507. | DOI | MR
[3] Anguelov, R., Rosinger, E. E.: Hausdorff Continuous Solutions of Nonlinear PDEs through the Order Completion Method. Quaestiones Mathematicae 28 (2005), 271-285. | DOI | MR
[4] Anguelov, R., Walt, J. H. van der: Order Convergence Structure on $C(X)$. Quaestiones Mathematicae 28 (2005), 425-457. | DOI | MR
[5] Beattie, R., Butzmann, H.-P.: Convergence structures and applications to functional analysis. Kluwer Academic Plublishers, Dordrecht, Boston, London (2002). | MR
[6] Borwein, J., Kortezov, I.: Constructive minimal uscos. C.R. Bulgare Sci 57 (2004), 9-12. | MR | Zbl
[7] Fabian, M.: Gâteaux differentiability of convex functions and topology: weak Asplund spaces. Wiley-Interscience, New York (1997). | MR | Zbl
[8] Hansell, R. W., Jayne, J. E., Talagrand, M.: First class selectors for weakly upper semi-continuous multi-valued maps in Banach spaces. J. Reine Angew. Math. 361 (1985), 201-220. | MR | Zbl
[9] Luxemburg, W. A., Zaanen, A. C.: Riesz Spaces I. North-Holland, Amsterdam, London (1971).
[10] Kalenda, O.: Stegall compact spaces which are not fragmentable. Topol. Appl. 96 (1999), 121-132. | DOI | MR | Zbl
[11] Kalenda, O.: Baire-one mappings contained in a usco map. Comment. Math. Univ. Carolinae 48 (2007), 135-145. | MR
[12] Sendov, B.: Hausdorff approximations. Kluwer Academic, Boston (1990). | MR | Zbl
[13] Spurný, J.: Banach space valued mappings of the first Baire class contained in usco mappings. Comment. Math. Univ. Carolinae 48 (2007), 269-272. | MR
[14] Srivatsa, V. V.: Baire class 1 selectors for upper semicontinuous set-valued maps. Trans. Amer. Math. Soc. 337 (1993), 609-624. | MR | Zbl