Existence, uniqueness and regularity of stationary solutions to inhomogeneous Navier-Stokes equations in $\Bbb R^n$
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 61-79 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For a bounded domain $\Omega \subset \Bbb R ^n$, $n\geq 3,$ we use the notion of very weak solutions to obtain a new and large uniqueness class for solutions of the inhomogeneous Navier-Stokes system $-\Delta u + u \cdot \nabla u + \nabla p=f$, $\div u = k$, $u_{|_{\partial \Omega }}=g$ with $u \in L^q$, $q \geq n$, and very general data classes for $f$, $k$, $g$ such that $u$ may have no differentiability property. For smooth data we get a large class of unique and regular solutions extending well known classical solution classes, and generalizing regularity results. Moreover, our results are closely related to those of a series of papers by Frehse Růžička, see e.g. Existence of regular solutions to the stationary Navier-Stokes equations, Math. Ann. 302 (1995), 669--717, where the existence of a weak solution which is locally regular is proved.
For a bounded domain $\Omega \subset \Bbb R ^n$, $n\geq 3,$ we use the notion of very weak solutions to obtain a new and large uniqueness class for solutions of the inhomogeneous Navier-Stokes system $-\Delta u + u \cdot \nabla u + \nabla p=f$, $\div u = k$, $u_{|_{\partial \Omega }}=g$ with $u \in L^q$, $q \geq n$, and very general data classes for $f$, $k$, $g$ such that $u$ may have no differentiability property. For smooth data we get a large class of unique and regular solutions extending well known classical solution classes, and generalizing regularity results. Moreover, our results are closely related to those of a series of papers by Frehse Růžička, see e.g. Existence of regular solutions to the stationary Navier-Stokes equations, Math. Ann. 302 (1995), 669--717, where the existence of a weak solution which is locally regular is proved.
Classification : 35B65, 35J55, 35J65, 35Q30, 76D05, 76D07
Keywords: stationary Stokes and Navier-Stokes system; very weak solutions; existence and uniqueness in higher dimensions; regularity classes in higher dimensions
@article{CMJ_2009_59_1_a4,
     author = {Farwig, R. and Sohr, H.},
     title = {Existence, uniqueness and regularity of stationary solutions to inhomogeneous {Navier-Stokes} equations in $\Bbb R^n$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {61--79},
     year = {2009},
     volume = {59},
     number = {1},
     mrnumber = {2486616},
     zbl = {1224.76034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a4/}
}
TY  - JOUR
AU  - Farwig, R.
AU  - Sohr, H.
TI  - Existence, uniqueness and regularity of stationary solutions to inhomogeneous Navier-Stokes equations in $\Bbb R^n$
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 61
EP  - 79
VL  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a4/
LA  - en
ID  - CMJ_2009_59_1_a4
ER  - 
%0 Journal Article
%A Farwig, R.
%A Sohr, H.
%T Existence, uniqueness and regularity of stationary solutions to inhomogeneous Navier-Stokes equations in $\Bbb R^n$
%J Czechoslovak Mathematical Journal
%D 2009
%P 61-79
%V 59
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a4/
%G en
%F CMJ_2009_59_1_a4
Farwig, R.; Sohr, H. Existence, uniqueness and regularity of stationary solutions to inhomogeneous Navier-Stokes equations in $\Bbb R^n$. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 61-79. http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a4/

[1] Adams, R. A.: Sobolev Spaces. Academic Press, New York (1975). | MR | Zbl

[2] Amann, H.: Nonhomogeneous Navier-Stokes equations with integrable low-regularity data. Int. Math. Ser., Kluwer Academic/Plenum Publishing, New York (2002), 1-28. | DOI | MR

[3] Amann, H.: Navier-Stokes equations with nonhomogeneous Dirichlet data. J. Nonlinear Math. Physics 10 (2003), 1-11. | DOI | MR

[4] Borchers, W., Miyakawa, T.: Algebraic $L^2$ decay for Navier-Stokes flows in exterior domains. Hiroshima Math. J. 21 (1991), 621-640. | DOI | MR

[5] Bogovskij, M. E.: Solution of the first boundary value problem for the equation of continuity of an incompressible medium. Soviet Math. Dokl. 20 (1979), 1094-1098. | Zbl

[6] Cannone, M.: Viscous flows in Besov spaces. Advances in Math. Fluid Mech., Springer, Berlin (2000), 1-34. | MR | Zbl

[7] Fabes, E. B., Jones, B. F., Rivière, N. M.: The initial value problem for the Navier-Stokes equations with data in $L^p$. Arch. Rational Mech. Anal. 45 (1972), 222-240. | DOI | MR

[8] Farwig, R., Sohr, H.: Generalized resolvent estimates for the Stokes system in bounded and unbounded domains. J. Math. Soc. Japan 46 (1994), 607-643. | DOI | MR | Zbl

[9] Farwig, R., Galdi, G. P., Sohr, H.: A new class of weak solutions of the Navier-Stokes equations with nonhomogeneous data. J. Math. Fluid Mech. 8 (2006), 423-444. | DOI | MR | Zbl

[10] Frehse, J., Růžička, M.: Weighted estimates for the stationary Navier-Stokes equations. Acta Appl. Math. 37 53-66 (1994). | DOI | MR

[11] Frehse, J., Růžička, M.: Regularity for the stationary Navier-Stokes equations in bounded domains. Arch. Rational Mech. Anal. 128 361-380 (1994). | DOI | MR

[12] Frehse, J., Růžička, M.: On the regularity of the stationary Navier-Stokes equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (IV) 21 63-95 (1994). | MR

[13] Frehse, J., Růžička, M.: Existence of regular solutions to the stationary Navier-Stokes equations. Math. Ann. 302 669-717 (1995). | DOI | MR

[14] Frehse, J., Růžička, M.: Existence of regular solutions to the steady Navier-Stokes equations in bounded six-dimensional domains. Ann. Sc. Norm. Super. Pisa Cl. Sci. (IV) 23 701-719 (1996). | MR

[15] Frehse, J., Růžička, M.: Regularity for steady solutions of the Navier-Stokes equations J. G. Heywood, et al. (eds.), Theory of the Navier-Stokes equations. Proc. 3rd Intern. Conf. Navier-Stokes Equations: theory and numerical methods. World Scientific Ser. Adv. Math. Appl. Sci., Singapore 47 159-178 (1998). | DOI | MR

[16] Frehse, J., Růžička, M.: A new regularity criterion for steady Navier-Stokes equations. Differential Integral Equations 11 (1998), 361-368. | MR

[17] Fujiwara, D., Morimoto, H.: An $L_r$-theory of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo (1A) 24 (1977), 685-700. | MR

[18] Galdi, G. P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations; Linearized Steady Problems. Springer Tracts in Natural Philosophy, Vol. 38, Springer-Verlag, New York (1998). | MR

[19] Galdi, G. P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations; Nonlinear Steady Problems. Springer Tracts in Natural Philosophy, Vol. 39, New York (1998). | MR

[20] Galdi, G. P., Simader, C. G., Sohr, H.: A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in $W^{-1/q,q}(\partial \Omega)$. Math. Ann. 331 (2005), 41-74. | DOI | MR | Zbl

[21] Gerhardt, C.: Stationary solutions of the Navier-Stokes equations in dimension four. Math. Z. 165 (1979), 193-197. | DOI | MR

[22] Giga, Y.: Analyticity of the semigroup generated by the Stokes operator in $L_r$-spaces. Math. Z. 178 (1981), 287-329. | DOI | MR | Zbl

[23] Giga, Y.: Domains of fractional powers of the Stokes operator in $L_r$-spaces. Arch. Rational Mech. Anal. 89 (1985), 251-265. | DOI | MR

[24] Giga, Y., Sohr, H.: On the Stokes operator in exterior domains. J. Fac. Sci. Univ. Tokyo, Sec. IA 36 (1989), 103-130. | MR

[25] Giga, Y., Sohr, H.: Abstract $L^q$-estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. J. Funct. Anal. 102 (1991), 72-94. | DOI | MR | Zbl

[26] Kato, T.: Strong $L^p$-solutions to the Navier-Stokes equations in $\Bbb R^m$ with applications to weak solutions. Math. Z. 187 (1984), 471-480. | DOI | MR

[27] Kozono, H., Yamazaki, M.: Local and global solvability of the Navier-Stokes exterior problem with Cauchy data in the space $L^{n,\infty}$. Houston J. Math. 21 (1995), 755-799. | MR

[28] Nečas, J.: Les Méthodes Directes en Théorie des Équations Elliptiques. Academia, Prague (1967). | MR

[29] Simader, C. G., Sohr, H.: A new approach to the Helmholtz decomposition and the Neumann problem in $L^q$-spaces for bounded and exterior domains. Adv. Math. Appl. Sci., World Scientific 11 (1992), 1-35. | DOI | MR

[30] Solonnikov, V. A.: Estimates for solutions of nonstationary Navier-Stokes equations. J. Soviet Math. 8 (1977), 467-528. | DOI | Zbl

[31] Sohr, H.: The Navier-Stokes equations. An elementary functional analytic approach. Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel (2001). | MR | Zbl

[32] Temam, R.: Navier-Stokes Equations. Theory and numerical analysis. North-Holland, Amsterdam, New York, Tokyo (1984). | MR | Zbl

[33] Triebel, H.: Interpolation Theory, Function Spaces. Differential Operators. North-Holland, Amsterdam (1978). | MR | Zbl

[34] Wahl, W. von: Regularity of weak solutions of the Navier-Stokes equations. Proc. Symp. Pure Math. 45 (1986), 497-503. | MR