Keywords: digraphs; Chinese remainder theorem; Carmichael $\lambda $-function; group theory
@article{CMJ_2009_59_1_a2,
author = {Skowronek-Kazi\'ow, J.},
title = {Properties of digraphs connected with some congruence relations},
journal = {Czechoslovak Mathematical Journal},
pages = {39--49},
year = {2009},
volume = {59},
number = {1},
mrnumber = {2486614},
zbl = {1221.05183},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a2/}
}
Skowronek-Kaziów, J. Properties of digraphs connected with some congruence relations. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 39-49. http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a2/
[1] Bryant, S.: Groups, graphs and Fermat's last theorem. Amer. Math. Monthly 74 (1967), 152-156. | DOI | MR | Zbl
[2] Carmichael, R. D.: Note on a new number theory function. Bull. Amer. Math. Soc. 16 (1910), 232-238 \JFM 41.0226.04. | DOI | MR
[3] Chassé, G.: Combinatorial cycles of a polynomial map over a commutative field. Discrete Math. 61 (1986), 21-26. | DOI | MR
[4] Harary, F.: Graph Theory. Addison-Wesley Publ. Company, London (1969). | MR | Zbl
[5] Křížek, M., Somer, L.: On a connection of number theory with graph theory. Czech. Math. J. 54 (2004), 465-485. | DOI | MR
[6] Křížek, M., Luca, F., Somer, L.: 17 Lectures on the Fermat Numbers. From Number Theory to Geometry. Springer-Verlag, New York (2001). | MR
[7] Rogers, T. D.: The graph of the square mapping on the prime fields. Discrete Math. 148 (1996), 317-324. | DOI | MR | Zbl
[8] Sierpiński, W.: Elementary Theory of Numbers. North-Holland (1988). | MR
[9] Szalay, L.: A discrete iteration in number theory. BDTF Tud. Közl. 8 (1992), 71-91 Hungarian. | Zbl