Locally flat Banach spaces
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 273-284 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The notion of functions dependent locally on finitely many coordinates plays an important role in the theory of smoothness and renormings on Banach spaces, especially when higher order smoothness is involved. In this note we investigate the structural properties of Banach spaces admitting (arbitrary) bump functions depending locally on finitely many coordinates.
The notion of functions dependent locally on finitely many coordinates plays an important role in the theory of smoothness and renormings on Banach spaces, especially when higher order smoothness is involved. In this note we investigate the structural properties of Banach spaces admitting (arbitrary) bump functions depending locally on finitely many coordinates.
Classification : 46A03, 46B10, 46B20
Keywords: polyhedrality
@article{CMJ_2009_59_1_a18,
     author = {Johanis, Michal},
     title = {Locally flat {Banach} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {273--284},
     year = {2009},
     volume = {59},
     number = {1},
     mrnumber = {2486630},
     zbl = {1224.46024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a18/}
}
TY  - JOUR
AU  - Johanis, Michal
TI  - Locally flat Banach spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 273
EP  - 284
VL  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a18/
LA  - en
ID  - CMJ_2009_59_1_a18
ER  - 
%0 Journal Article
%A Johanis, Michal
%T Locally flat Banach spaces
%J Czechoslovak Mathematical Journal
%D 2009
%P 273-284
%V 59
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a18/
%G en
%F CMJ_2009_59_1_a18
Johanis, Michal. Locally flat Banach spaces. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 273-284. http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a18/

[1] Bonic, R., Frampton, J.: Smooth functions on Banach manifolds. J. Math. Mech. 15 (1966), 877-898. | MR | Zbl

[2] Deville, R., Godefroy, G., Zizler, V.: Smoothness and Renormings in Banach Spaces. Monographs and Surveys in Pure and Applied Mathematics, 64. Longman Scientific & Technical; John Wiley & Sons, Inc. Harlow; New York (1993). | MR

[3] Deville, R., Godefroy, G., Zizler, V.: The three space problem for smooth partitions of unity and $C(K)$ spaces. Math. Ann. 288 (1990), 613-625. | DOI | MR | Zbl

[4] Fonf, V. P.: Polyhedral Banach spaces. Math. Notes 30 (1982), 809-813. | DOI | MR

[5] Fonf, V. P.: Three characterizations of polyhedral Banach spaces. Uk. Math. J. 42 (1990), 1145-1148. | DOI | MR | Zbl

[6] Fabian, M., Zizler, V.: A note on bump functions that locally depend on finitely many coordinates. Bull. Aust. Math. Soc. 56 (1997), 447-451. | DOI | MR | Zbl

[7] Godefroy, G., Pelant, J., Whitfield, J. H. M., Zizler, V.: Banach space properties of Ciesielski-Pol's $C(K)$ space. Proc. Am. Math. Soc. 103 (1988), 1087-1093. | MR | Zbl

[8] Godefroy, G., Troyanski, S., Whitfield, J. H. M., Zizler, V.: Smoothness in weakly compactly generated Banach spaces. J. Funct. Anal. 52 (1983), 344-352. | DOI | MR | Zbl

[9] Hájek, P.: Smooth norms that depend locally on finitely many coordinates. Proc. Am. Math. Soc. 123 (1995), 3817-3821. | DOI | MR

[10] Hájek, P.: Smooth norms on certain $C(K)$ spaces. Proc. Am. Math. Soc. 131 (2003), 2049-2051. | DOI | MR | Zbl

[11] Hájek, P.: Smooth partitions of unity on certain $C(K)$ spaces. Mathematika 52 (2005), 131-138. | DOI | MR | Zbl

[12] Hájek, P., Johanis, M.: Smoothing of bump functions. J. Math. Anal. Appl. 338 (2008), 1131-1139. | DOI | MR

[13] Hájek, P., Johanis, M.: Polyhedrality in Orlicz spaces. Israel J. Math 168 (2008), 167-188. | DOI | MR

[14] Haydon, R. G.: Normes infiniment différentiables sur certains espaces de Banach. C. R. Acad. Sci., Paris, Sér. I 315 (1992), 1175-1178 French. | MR | Zbl

[15] Haydon, R. G.: Smooth functions and partitions of unity on certain Banach spaces. Q. J. Math., Oxf. II. Ser. 47 (1996), 455-468. | DOI | MR | Zbl

[16] Haydon, R. G.: Trees in renorming theory. Proc. Lond. Math. Soc., III. Ser. 78 (1999), 541-584. | DOI | MR | Zbl

[17] Johnson, W. B., (Eds.), J. Lindenstrauss: Handbook of the Geometry of Banach Spaces, Vol. 1. Elsevier Amsterdam (2001). | MR

[18] Klee, V. L.: Polyhedral sections of convex bodies. Acta Math. 103 (1960), 243-267. | DOI | MR | Zbl

[19] Leung, D. H.: Some isomorphically polyhedral Orlicz sequence spaces. Isr. J. Math. 87 (1994), 117-128. | DOI | MR | Zbl

[20] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces. I: Sequence Spaces. Springer (1977). | MR | Zbl

[21] Pechanec, J., Whitfield, J. H. M., Zizler, V.: Norms locally dependent on finitely many coordinates. An. Acad. Bras. Cienc. 53 (1981), 415-417. | MR | Zbl

[22] Talagrand, M.: Renormages de quelques $\Cal C(K)$. Isr. J. Math. 54 (1986), 327-334 French. | DOI | MR | Zbl

[23] Toruńczyk, H.: Smooth partitions of unity on some non-separable Banach spaces. Stud. Math. 46 (1973), 43-51. | DOI | MR