On the structure of a Morse form foliation
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 207-220 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The foliation of a Morse form $\omega$ on a closed manifold $M$ is considered. Its maximal components (cylinders formed by compact leaves) form the foliation graph; the cycle rank of this graph is calculated. The number of minimal and maximal components is estimated in terms of characteristics of $M$ and $\omega$. Conditions for the presence of minimal components and homologically non-trivial compact leaves are given in terms of $\mathop{\rm rk}\omega $ and ${\rm Sing} \omega $. The set of the ranks of all forms defining a given foliation without minimal components is described. It is shown that if $\omega$ has more centers than conic singularities then $b_1(M)=0$ and thus the foliation has no minimal components and homologically non-trivial compact leaves, its folitation graph being a tree.
The foliation of a Morse form $\omega$ on a closed manifold $M$ is considered. Its maximal components (cylinders formed by compact leaves) form the foliation graph; the cycle rank of this graph is calculated. The number of minimal and maximal components is estimated in terms of characteristics of $M$ and $\omega$. Conditions for the presence of minimal components and homologically non-trivial compact leaves are given in terms of $\mathop{\rm rk}\omega $ and ${\rm Sing} \omega $. The set of the ranks of all forms defining a given foliation without minimal components is described. It is shown that if $\omega$ has more centers than conic singularities then $b_1(M)=0$ and thus the foliation has no minimal components and homologically non-trivial compact leaves, its folitation graph being a tree.
Classification : 57R30, 58K65
Keywords: number of minimal components; number of maximal components; compact leaves; foliation graph; rank of a form
@article{CMJ_2009_59_1_a14,
     author = {Gelbukh, I.},
     title = {On the structure of a {Morse} form foliation},
     journal = {Czechoslovak Mathematical Journal},
     pages = {207--220},
     year = {2009},
     volume = {59},
     number = {1},
     mrnumber = {2486626},
     zbl = {1224.57010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a14/}
}
TY  - JOUR
AU  - Gelbukh, I.
TI  - On the structure of a Morse form foliation
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 207
EP  - 220
VL  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a14/
LA  - en
ID  - CMJ_2009_59_1_a14
ER  - 
%0 Journal Article
%A Gelbukh, I.
%T On the structure of a Morse form foliation
%J Czechoslovak Mathematical Journal
%D 2009
%P 207-220
%V 59
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a14/
%G en
%F CMJ_2009_59_1_a14
Gelbukh, I. On the structure of a Morse form foliation. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 207-220. http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a14/

[1] Arnoux, P., Levitt, G.: Sur l'unique ergodicité des 1-formes fermées singulières. Invent. Math. 84 (1986), 141-156. | DOI | MR | Zbl

[2] Farber, M., Katz, G., Levine, J.: Morse theory of harmonic forms. Topology 37 (1998), 469-483. | DOI | MR | Zbl

[3] Gelbukh, I.: Presence of minimal components in a Morse form foliation. Diff. Geom. Appl. 22 (2005), 189-198. | DOI | MR | Zbl

[4] Gelbukh, I.: Ranks of collinear Morse forms. Submitted.

[5] Harary, F.: Graph theory. Addison-Wesley Publ. Comp., Massachusetts (1994). | MR

[6] Honda, K.: A note on Morse theory of harmonic 1-forms. Topology 38 (1999), 223-233. | DOI | MR | Zbl

[7] Imanishi, H.: On codimension one foliations defined by closed one forms with singularities. J. Math. Kyoto Univ. 19 (1979), 285-291. | DOI | MR | Zbl

[8] Katok, A.: Invariant measures of flows on oriented surfaces. Sov. Math. Dokl. 14 (1973), 1104-1108. | Zbl

[9] Levitt, G.: 1-formes fermées singulières et groupe fondamental. Invent. Math. 88 (1987), 635-667. | DOI | MR | Zbl

[10] Levitt, G.: Groupe fondamental de l'espace des feuilles dans les feuilletages sans holonomie. J. Diff. Geom. 31 (1990), 711-761. | DOI | MR | Zbl

[11] Mel'nikova, I.: A test for non-compactness of the foliation of a Morse form. Russ. Math. Surveys 50 (1995), 444-445. | DOI | Zbl

[12] Mel'nikova, I.: Maximal isotropic subspaces of skew-symmetric bilinear map. Vestnik MGU 4 (1999), 3-5. | MR

[13] Novikov, S.: The Hamiltonian formalism and a multivalued analog of Morse theory. Russian Math. Surveys 37 (1982), 1-56. | DOI | MR

[14] Pazhitnov, A.: The incidence coefficients in the Novikov complex are generically rational functions. Sankt-Petersbourg Math. J. 9 (1998), 969-1006. | MR

[15] Tischler, D.: On fibering certain foliated manifolds over $S^1$. Topology 9 (1970), 153-154. | DOI | MR | Zbl