Keywords: number of minimal components; number of maximal components; compact leaves; foliation graph; rank of a form
@article{CMJ_2009_59_1_a14,
author = {Gelbukh, I.},
title = {On the structure of a {Morse} form foliation},
journal = {Czechoslovak Mathematical Journal},
pages = {207--220},
year = {2009},
volume = {59},
number = {1},
mrnumber = {2486626},
zbl = {1224.57010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a14/}
}
Gelbukh, I. On the structure of a Morse form foliation. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 207-220. http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a14/
[1] Arnoux, P., Levitt, G.: Sur l'unique ergodicité des 1-formes fermées singulières. Invent. Math. 84 (1986), 141-156. | DOI | MR | Zbl
[2] Farber, M., Katz, G., Levine, J.: Morse theory of harmonic forms. Topology 37 (1998), 469-483. | DOI | MR | Zbl
[3] Gelbukh, I.: Presence of minimal components in a Morse form foliation. Diff. Geom. Appl. 22 (2005), 189-198. | DOI | MR | Zbl
[4] Gelbukh, I.: Ranks of collinear Morse forms. Submitted.
[5] Harary, F.: Graph theory. Addison-Wesley Publ. Comp., Massachusetts (1994). | MR
[6] Honda, K.: A note on Morse theory of harmonic 1-forms. Topology 38 (1999), 223-233. | DOI | MR | Zbl
[7] Imanishi, H.: On codimension one foliations defined by closed one forms with singularities. J. Math. Kyoto Univ. 19 (1979), 285-291. | DOI | MR | Zbl
[8] Katok, A.: Invariant measures of flows on oriented surfaces. Sov. Math. Dokl. 14 (1973), 1104-1108. | Zbl
[9] Levitt, G.: 1-formes fermées singulières et groupe fondamental. Invent. Math. 88 (1987), 635-667. | DOI | MR | Zbl
[10] Levitt, G.: Groupe fondamental de l'espace des feuilles dans les feuilletages sans holonomie. J. Diff. Geom. 31 (1990), 711-761. | DOI | MR | Zbl
[11] Mel'nikova, I.: A test for non-compactness of the foliation of a Morse form. Russ. Math. Surveys 50 (1995), 444-445. | DOI | Zbl
[12] Mel'nikova, I.: Maximal isotropic subspaces of skew-symmetric bilinear map. Vestnik MGU 4 (1999), 3-5. | MR
[13] Novikov, S.: The Hamiltonian formalism and a multivalued analog of Morse theory. Russian Math. Surveys 37 (1982), 1-56. | DOI | MR
[14] Pazhitnov, A.: The incidence coefficients in the Novikov complex are generically rational functions. Sankt-Petersbourg Math. J. 9 (1998), 969-1006. | MR
[15] Tischler, D.: On fibering certain foliated manifolds over $S^1$. Topology 9 (1970), 153-154. | DOI | MR | Zbl