Keywords: pseudo effect algebra; unital partially ordered group; internal direct factor; polar; projectability; strong projectability; weak homogeneity
@article{CMJ_2009_59_1_a12,
author = {Jakub{\'\i}k, J\'an},
title = {Projectability and weak homogeneity of pseudo effect algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {183--196},
year = {2009},
volume = {59},
number = {1},
mrnumber = {2486624},
zbl = {1224.06020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a12/}
}
Jakubík, Ján. Projectability and weak homogeneity of pseudo effect algebras. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 183-196. http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a12/
[1] Cignoli, R., D'Ottaviano, M. I., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning. Trends in Logic, Studia Logica Library Vol. 7. Kluwer Dordrecht (2000). | DOI
[2] Darnel, M. R.: Theory of Lattice-Ordered Groups. Marcel Dekker New York (1995). | MR | Zbl
[3] Dvurečenskij, A., Vetterlein, T.: Pseudoeffect algebras. I. Basic properties. Inter. J. Theor. Phys. 40 (2001), 685-701. | DOI | MR
[4] Dvurečenskij, A., Vetterlein, T.: Pseudoeffect algebras. II. Group representations. Int. J. Theor. Phys. 40 (2001), 703-726. | DOI | MR
[5] Dvurečenskij, A., Vetterlein, T.: Infinitary lattice and Riesz properties of pseudoeffect algebras and $po$-groups. J. Aust. Math. Soc. 75 (2003), 295-311. | DOI | MR
[6] Georgescu, G., Iorgulescu, A.: Pseudo $MV$-algebras: a noncommutative extension of $MV$-algebras. In: Proceedings of the Fourth International Symposium on Economic Informatics, Bucharest, 6-9 May, Romania (1999), 961-968. | MR | Zbl
[7] Georgescu, G., Iorgulescu, A.: Pseudo $MV$-algebras. Mult.-Valued Log. 6 (2001), 95-135. | MR | Zbl
[8] Jakubík, J.: Weak homogeneity and Pierce's theorem for $MV$-algebras. Czechoslovak Math. J. 56 (2006), 1215-1227. | DOI | MR | Zbl
[9] Jakubík, J.: Weak homogeneity of lattice ordered groups. Czechoslovak Math. J (to appear). | MR
[10] Jakubík, J.: Direct product decompositions of pseudo effect algebras. Math. Slovaca 55 (2005), 379-398. | MR
[11] Rachůnek, J.: A non-commutative generalization of $MV$-algebras. Czechoslovak Math. J. 52 (2002), 255-273. | DOI | MR
[12] Sikorski, R.: Boolean Algebras, 2nd edition. Springer Berlin (1964). | MR