A new characterization of ${\rm RBMO}(\mu )$ by John-Strömberg sharp maximal functions
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 159-171
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $\mu $ be a nonnegative Radon measure on ${{\mathbb R}^d}$ which only satisfies $\mu (B(x, r))\le C_0r^n$ for all $x\in {{\mathbb R}^d}$, $r>0$, with some fixed constants $C_0>0$ and $n\in (0,d].$ In this paper, a new characterization for the space $\mathop{\rm RBMO}(\mu )$ of Tolsa in terms of the John-Strömberg sharp maximal function is established.
Let $\mu $ be a nonnegative Radon measure on ${{\mathbb R}^d}$ which only satisfies $\mu (B(x, r))\le C_0r^n$ for all $x\in {{\mathbb R}^d}$, $r>0$, with some fixed constants $C_0>0$ and $n\in (0,d].$ In this paper, a new characterization for the space $\mathop{\rm RBMO}(\mu )$ of Tolsa in terms of the John-Strömberg sharp maximal function is established.
Classification :
42B25, 42B35, 43A99
Keywords: non-doubling measure; $\mathop{\rm RBMO}(\mu )$; sharp maximal function
Keywords: non-doubling measure; $\mathop{\rm RBMO}(\mu )$; sharp maximal function
@article{CMJ_2009_59_1_a10,
author = {Hu, Guoen and Yang, Dachun and Yang, Dongyong},
title = {A new characterization of ${\rm RBMO}(\mu )$ by {John-Str\"omberg} sharp maximal functions},
journal = {Czechoslovak Mathematical Journal},
pages = {159--171},
year = {2009},
volume = {59},
number = {1},
mrnumber = {2486622},
zbl = {1224.42061},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a10/}
}
TY - JOUR
AU - Hu, Guoen
AU - Yang, Dachun
AU - Yang, Dongyong
TI - A new characterization of ${\rm RBMO}(\mu )$ by John-Strömberg sharp maximal functions
JO - Czechoslovak Mathematical Journal
PY - 2009
SP - 159
EP - 171
VL - 59
IS - 1
UR - http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a10/
LA - en
ID - CMJ_2009_59_1_a10
ER -
%0 Journal Article
%A Hu, Guoen
%A Yang, Dachun
%A Yang, Dongyong
%T A new characterization of ${\rm RBMO}(\mu )$ by John-Strömberg sharp maximal functions
%J Czechoslovak Mathematical Journal
%D 2009
%P 159-171
%V 59
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a10/
%G en
%F CMJ_2009_59_1_a10
Hu, Guoen; Yang, Dachun; Yang, Dongyong. A new characterization of ${\rm RBMO}(\mu )$ by John-Strömberg sharp maximal functions. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 159-171. http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a10/