A new characterization of ${\rm RBMO}(\mu )$ by John-Strömberg sharp maximal functions
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 159-171 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mu $ be a nonnegative Radon measure on ${{\mathbb R}^d}$ which only satisfies $\mu (B(x, r))\le C_0r^n$ for all $x\in {{\mathbb R}^d}$, $r>0$, with some fixed constants $C_0>0$ and $n\in (0,d].$ In this paper, a new characterization for the space $\mathop{\rm RBMO}(\mu )$ of Tolsa in terms of the John-Strömberg sharp maximal function is established.
Let $\mu $ be a nonnegative Radon measure on ${{\mathbb R}^d}$ which only satisfies $\mu (B(x, r))\le C_0r^n$ for all $x\in {{\mathbb R}^d}$, $r>0$, with some fixed constants $C_0>0$ and $n\in (0,d].$ In this paper, a new characterization for the space $\mathop{\rm RBMO}(\mu )$ of Tolsa in terms of the John-Strömberg sharp maximal function is established.
Classification : 42B25, 42B35, 43A99
Keywords: non-doubling measure; $\mathop{\rm RBMO}(\mu )$; sharp maximal function
@article{CMJ_2009_59_1_a10,
     author = {Hu, Guoen and Yang, Dachun and Yang, Dongyong},
     title = {A new characterization of ${\rm RBMO}(\mu )$ by {John-Str\"omberg} sharp maximal functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {159--171},
     year = {2009},
     volume = {59},
     number = {1},
     mrnumber = {2486622},
     zbl = {1224.42061},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a10/}
}
TY  - JOUR
AU  - Hu, Guoen
AU  - Yang, Dachun
AU  - Yang, Dongyong
TI  - A new characterization of ${\rm RBMO}(\mu )$ by John-Strömberg sharp maximal functions
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 159
EP  - 171
VL  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a10/
LA  - en
ID  - CMJ_2009_59_1_a10
ER  - 
%0 Journal Article
%A Hu, Guoen
%A Yang, Dachun
%A Yang, Dongyong
%T A new characterization of ${\rm RBMO}(\mu )$ by John-Strömberg sharp maximal functions
%J Czechoslovak Mathematical Journal
%D 2009
%P 159-171
%V 59
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a10/
%G en
%F CMJ_2009_59_1_a10
Hu, Guoen; Yang, Dachun; Yang, Dongyong. A new characterization of ${\rm RBMO}(\mu )$ by John-Strömberg sharp maximal functions. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 159-171. http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a10/

[1] Hu, G., Wang, X., Yang, D.: A new characterization for regular BMO with non-doubling measures. Proc. Edinburgh Math. Soc. 51 (2008), 155-170. | MR | Zbl

[2] Hu, G., Yang, D.: Weighted norm inequalities for maximal singular integrals with non-doubling measures. Studia Math. 187 (2008), 101-123. | DOI | MR

[3] John, F.: Quasi-isometric mappings. 1965 Seminari 1962/63 Anal. Alg. Geom. e Topol., vol. 2, Ist. Naz. Alta Mat., 462-473, Ediz. Cremonese, Rome. | MR | Zbl

[4] Lerner, A. K.: On the John-Strömberg characterization of BMO for nondoubling measures. Real Anal. Exch. 28 (2002/03), 649-660. | DOI | MR | Zbl

[5] Mateu, J., Mattila, P., Nicolau, A., Orobitg, J.: BMO for nondoubling measures. Duke Math. J. 102 (2000), 533-565. | DOI | MR | Zbl

[6] Meng, Y.: Multilinear Calderón-Zygmund operators on the product of Lebesgue spaces with non-doubling measures. J. Math. Anal. Appl. 335 (2007), 314-331. | DOI | MR | Zbl

[7] Nazarov, F., Treil, S., Volberg, A.: The $Tb$-theorem on non-homogeneous spaces. Acta Math. 190 (2003), 151-239. | DOI | MR | Zbl

[8] Strömberg, J. O.: Bounded mean oscillation with Orlicz norms and duality of Hardy spaces. Indiana Univ. Math. J. 28 (1979), 511-544. | DOI | MR

[9] Tolsa, X.: $BMO$, $H^1$ and Calderón-Zygmund operators for non doubling measures. Math. Ann. 319 (2001), 89-149. | DOI | MR

[10] Tolsa, X.: Painlevé's problem and the semiadditivity of analytic capacity. Acta Math. 190 (2003), 105-149. | DOI | MR | Zbl

[11] Tolsa, X.: The semiadditivity of continuous analytic capacity and the inner boundary conjecture. Am. J. Math. 126 (2004), 523-567. | DOI | MR | Zbl

[12] Tolsa, X.: Analytic capacity and Calderón-Zygmund theory with non doubling measures. Seminar of Mathematical Analysis, 239-271, {Colecc. Abierta}, {\it 71}, Univ. Sevilla Secr. Publ., Seville. (2004). | MR

[13] Tolsa, X.: Bilipschitz maps, analytic capacity, and the Cauchy integral. Ann. Math. 162 (2005), 1243-1304. | DOI | MR | Zbl

[14] Tolsa, X.: Painlevé's problem and analytic capacity. Collect. Math. Extra (2006), 89-125. | MR | Zbl

[15] Verdera, J.: The fall of the doubling condition in Calderón-Zygmund theory. Publ. Mat. Extra (2002), 275-292. | DOI | MR | Zbl

[16] Volberg, A.: Calderón-Zygmund capacities and operators on nonhomogeneous spaces {CBMS Regional Conference Series in Mathematics}, {\it 100}, Amer. Math. Soc., Providence, RI. (2003). | MR