A class of strong limit theorems for countable nonhomogeneous Markov chains on the generalized gambling system
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 23-37 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we study the limit properties of countable nonhomogeneous Markov chains in the generalized gambling system by means of constructing compatible distributions and martingales. By allowing random selection functions to take values in arbitrary intervals, the concept of random selection is generalized. As corollaries, some strong limit theorems and the asymptotic equipartition property (AEP) theorems for countable nonhomogeneous Markov chains in the generalized gambling system are established. Some results obtained are extended.
In this paper, we study the limit properties of countable nonhomogeneous Markov chains in the generalized gambling system by means of constructing compatible distributions and martingales. By allowing random selection functions to take values in arbitrary intervals, the concept of random selection is generalized. As corollaries, some strong limit theorems and the asymptotic equipartition property (AEP) theorems for countable nonhomogeneous Markov chains in the generalized gambling system are established. Some results obtained are extended.
Classification : 60F15, 60G42, 60J10
Keywords: local convergence theorem; stochastic adapted sequence; martingale
@article{CMJ_2009_59_1_a1,
     author = {Wang, Kangkang},
     title = {A class of strong limit theorems for countable nonhomogeneous {Markov} chains on the generalized gambling system},
     journal = {Czechoslovak Mathematical Journal},
     pages = {23--37},
     year = {2009},
     volume = {59},
     number = {1},
     mrnumber = {2486613},
     zbl = {1224.60055},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a1/}
}
TY  - JOUR
AU  - Wang, Kangkang
TI  - A class of strong limit theorems for countable nonhomogeneous Markov chains on the generalized gambling system
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 23
EP  - 37
VL  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a1/
LA  - en
ID  - CMJ_2009_59_1_a1
ER  - 
%0 Journal Article
%A Wang, Kangkang
%T A class of strong limit theorems for countable nonhomogeneous Markov chains on the generalized gambling system
%J Czechoslovak Mathematical Journal
%D 2009
%P 23-37
%V 59
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a1/
%G en
%F CMJ_2009_59_1_a1
Wang, Kangkang. A class of strong limit theorems for countable nonhomogeneous Markov chains on the generalized gambling system. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 23-37. http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a1/

[1] Billingsley, P.: Probability and Measure. Wiley, New York (1986). | MR | Zbl

[2] Mises, R. V.: Mathematical Theory of Probability and Statistics. Academic Press. New York (1964). | MR | Zbl

[3] Kolmogorov, A. N.: On the logical foundation of probability theory. Lecture Notes in Mathematics. Springer-Verlag, New York, vol. 1021 (1982), 1-2. | MR

[4] Liu, W., Wang, Z.: An extension of a theorem on gambling systems to arbitrary binary random variables. Statistics and Probability Letters, vol. 28 (1996), 51-58. | DOI | MR

[5] Wang, Z.: A strong limit theorem on random selection for the N-valued random variables. Pure and Applied Mathematics (1999), 15 56-61. | MR

[6] Liu, W., Yang, W.: An extension of Shannon-McMillan theorem and some limit properties for nonhomogeneous Markov chains. Stochastic Process. Appl. (1996), 61 279-292. | MR | Zbl

[7] Stromberg, K. R., Hewitt, E.: Real and abstract analysis-a modern treament of the theory of functions of real variable. (1994), Springer, New York. | MR

[8] Shannon, C.: A mathematical theory of communication. Bell System Tech J. (1948), 27 379-423. | DOI | MR | Zbl

[9] Mcmillan, B.: The Basic Theorem of information theory. Ann. Math. Statist. (1953), 24 196-219. | DOI | MR

[10] Breiman, L.: The individual ergodic theorem of information theory. Ann. Math. Statist. (1957), 28 809-811. | DOI | MR | Zbl

[11] Barron, A. R.: The strong ergodic theorem of densities; Generalized Shannon-McMillan- Breiman theorem. Ann. Probab. (1985), 13 1292-1303. | MR

[12] Chung, K. L.: The ergodic theorem of information theorey. Ann. Math. Statist (1961), 32 612-614. | DOI | MR

[13] Feinstein, A.: A new basic theory of information. IRE Trans. P.G.I.T. (1954), 2-22. | MR

[14] Yang, W., Liu, W.: Strong law of large numbers and Shannon-McMillan theorem for Markov fields on trees. IEEE Trans. Inform. Theory (2002), 48 313-318. | DOI | MR

[15] Wang, Z., Yang, W.: Some strong limit theorems for both nonhomogeneous Markov chains of order two and their random transforms. J. Sys. Sci. and Math. Sci (2004), 24 451-462. | MR

[16] Wang, K., Yang, W.: Research on strong limit theorem for Cantor-like stochastic sequence of Science and Technology (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2006), 20 26-29. | MR

[17] Wang, K.: Strong large number law for Markov chains field on arbitrary Cayley tree (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2006), 20 28-32.

[18] Wang, K.: Some research on strong limit theorems for Cantor-like nonhomogeneous Markov chains (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2006), 20 19-23. | MR

[19] Wang, K., Qin, Z.: A class of strong limit theorems for arbitrary stochastic sequence in random selection system (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2006), 20 40-44. | MR

[20] Wang, K.: A class of strong limit theorems for stochastic sequence on product distribution in gambling system (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2007), 21 33-36. | MR

[21] Wang, K., Ye, H.: A class of strong limit theorems for Markov chains field on arbitrary Bethe tree (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2007), 21 37-40.

[22] Wang, K.: A class of strong limit theorems for random sum of Three-order countable nonhomogeneous Markov chains (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2007), 21 42-45. | MR

[23] Wang, K., Ye, H.: A class of local strong limit theorems for random sum of Cantor-like random function sequences (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2008), 22 87-90.

[24] Wang, K.: A class of strong limit theorems on generalized gambling system for arbitrary continuous random variable sequence (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2008), 22 86-90. | MR

[25] Li, M.: Some limit properties for the sequence of arbitrary random variables on their generalized random selection system (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2008), 22 90-94.