Keywords: local convergence theorem; stochastic adapted sequence; martingale
@article{CMJ_2009_59_1_a1,
author = {Wang, Kangkang},
title = {A class of strong limit theorems for countable nonhomogeneous {Markov} chains on the generalized gambling system},
journal = {Czechoslovak Mathematical Journal},
pages = {23--37},
year = {2009},
volume = {59},
number = {1},
mrnumber = {2486613},
zbl = {1224.60055},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a1/}
}
TY - JOUR AU - Wang, Kangkang TI - A class of strong limit theorems for countable nonhomogeneous Markov chains on the generalized gambling system JO - Czechoslovak Mathematical Journal PY - 2009 SP - 23 EP - 37 VL - 59 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a1/ LA - en ID - CMJ_2009_59_1_a1 ER -
Wang, Kangkang. A class of strong limit theorems for countable nonhomogeneous Markov chains on the generalized gambling system. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 23-37. http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a1/
[1] Billingsley, P.: Probability and Measure. Wiley, New York (1986). | MR | Zbl
[2] Mises, R. V.: Mathematical Theory of Probability and Statistics. Academic Press. New York (1964). | MR | Zbl
[3] Kolmogorov, A. N.: On the logical foundation of probability theory. Lecture Notes in Mathematics. Springer-Verlag, New York, vol. 1021 (1982), 1-2. | MR
[4] Liu, W., Wang, Z.: An extension of a theorem on gambling systems to arbitrary binary random variables. Statistics and Probability Letters, vol. 28 (1996), 51-58. | DOI | MR
[5] Wang, Z.: A strong limit theorem on random selection for the N-valued random variables. Pure and Applied Mathematics (1999), 15 56-61. | MR
[6] Liu, W., Yang, W.: An extension of Shannon-McMillan theorem and some limit properties for nonhomogeneous Markov chains. Stochastic Process. Appl. (1996), 61 279-292. | MR | Zbl
[7] Stromberg, K. R., Hewitt, E.: Real and abstract analysis-a modern treament of the theory of functions of real variable. (1994), Springer, New York. | MR
[8] Shannon, C.: A mathematical theory of communication. Bell System Tech J. (1948), 27 379-423. | DOI | MR | Zbl
[9] Mcmillan, B.: The Basic Theorem of information theory. Ann. Math. Statist. (1953), 24 196-219. | DOI | MR
[10] Breiman, L.: The individual ergodic theorem of information theory. Ann. Math. Statist. (1957), 28 809-811. | DOI | MR | Zbl
[11] Barron, A. R.: The strong ergodic theorem of densities; Generalized Shannon-McMillan- Breiman theorem. Ann. Probab. (1985), 13 1292-1303. | MR
[12] Chung, K. L.: The ergodic theorem of information theorey. Ann. Math. Statist (1961), 32 612-614. | DOI | MR
[13] Feinstein, A.: A new basic theory of information. IRE Trans. P.G.I.T. (1954), 2-22. | MR
[14] Yang, W., Liu, W.: Strong law of large numbers and Shannon-McMillan theorem for Markov fields on trees. IEEE Trans. Inform. Theory (2002), 48 313-318. | DOI | MR
[15] Wang, Z., Yang, W.: Some strong limit theorems for both nonhomogeneous Markov chains of order two and their random transforms. J. Sys. Sci. and Math. Sci (2004), 24 451-462. | MR
[16] Wang, K., Yang, W.: Research on strong limit theorem for Cantor-like stochastic sequence of Science and Technology (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2006), 20 26-29. | MR
[17] Wang, K.: Strong large number law for Markov chains field on arbitrary Cayley tree (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2006), 20 28-32.
[18] Wang, K.: Some research on strong limit theorems for Cantor-like nonhomogeneous Markov chains (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2006), 20 19-23. | MR
[19] Wang, K., Qin, Z.: A class of strong limit theorems for arbitrary stochastic sequence in random selection system (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2006), 20 40-44. | MR
[20] Wang, K.: A class of strong limit theorems for stochastic sequence on product distribution in gambling system (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2007), 21 33-36. | MR
[21] Wang, K., Ye, H.: A class of strong limit theorems for Markov chains field on arbitrary Bethe tree (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2007), 21 37-40.
[22] Wang, K.: A class of strong limit theorems for random sum of Three-order countable nonhomogeneous Markov chains (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2007), 21 42-45. | MR
[23] Wang, K., Ye, H.: A class of local strong limit theorems for random sum of Cantor-like random function sequences (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2008), 22 87-90.
[24] Wang, K.: A class of strong limit theorems on generalized gambling system for arbitrary continuous random variable sequence (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2008), 22 86-90. | MR
[25] Li, M.: Some limit properties for the sequence of arbitrary random variables on their generalized random selection system (in Chinese). J. Jiangsu Univ. Sci-tech. Nat. Sci. (2008), 22 90-94.