On super vertex-graceful unicyclic graphs
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 1-22 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A graph $G$ with $p$ vertices and $q$ edges, vertex set $V(G)$ and edge set $E(G)$, is said to be super vertex-graceful (in short SVG), if there exists a function pair $(f, f^+)$ where $f$ is a bijection from $V(G)$ onto $P$, $f^+$ is a bijection from $E(G)$ onto $Q$, $f^+((u, v)) = f(u) + f(v)$ for any $(u, v) \in E(G)$, $$ Q = \begin{cases} \{\pm 1,\dots , \pm \frac 12q\},\text {if $q$ is even,}\\ \{0, \pm 1, \dots , \pm \frac 12(q-1)\},\text {if $q$ is odd,} \end{cases} $$ and $$ P = \begin{cases} \{\pm 1,\dots , \pm \frac 12p\},\text {if $p$ is even,}\\ \{0, \pm 1, \dots , \pm \frac 12(p-1)\},\text {if $p$ is odd.} \end{cases} $$ \endgraf We determine here families of unicyclic graphs that are super vertex-graceful.
A graph $G$ with $p$ vertices and $q$ edges, vertex set $V(G)$ and edge set $E(G)$, is said to be super vertex-graceful (in short SVG), if there exists a function pair $(f, f^+)$ where $f$ is a bijection from $V(G)$ onto $P$, $f^+$ is a bijection from $E(G)$ onto $Q$, $f^+((u, v)) = f(u) + f(v)$ for any $(u, v) \in E(G)$, $$ Q = \begin{cases} \{\pm 1,\dots , \pm \frac 12q\},\text {if $q$ is even,}\\ \{0, \pm 1, \dots , \pm \frac 12(q-1)\},\text {if $q$ is odd,} \end{cases} $$ and $$ P = \begin{cases} \{\pm 1,\dots , \pm \frac 12p\},\text {if $p$ is even,}\\ \{0, \pm 1, \dots , \pm \frac 12(p-1)\},\text {if $p$ is odd.} \end{cases} $$ \endgraf We determine here families of unicyclic graphs that are super vertex-graceful.
Classification : 05C78
Keywords: graceful; edge-graceful; super edge-graceful; super vertex-graceful; amalgamation; trees; unicyclic graphs
@article{CMJ_2009_59_1_a0,
     author = {Lee, Sin-Min and Leung, Elo and Ng, Ho Kuen},
     title = {On super vertex-graceful unicyclic graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1--22},
     year = {2009},
     volume = {59},
     number = {1},
     mrnumber = {2486612},
     zbl = {1224.05447},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a0/}
}
TY  - JOUR
AU  - Lee, Sin-Min
AU  - Leung, Elo
AU  - Ng, Ho Kuen
TI  - On super vertex-graceful unicyclic graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 1
EP  - 22
VL  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a0/
LA  - en
ID  - CMJ_2009_59_1_a0
ER  - 
%0 Journal Article
%A Lee, Sin-Min
%A Leung, Elo
%A Ng, Ho Kuen
%T On super vertex-graceful unicyclic graphs
%J Czechoslovak Mathematical Journal
%D 2009
%P 1-22
%V 59
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a0/
%G en
%F CMJ_2009_59_1_a0
Lee, Sin-Min; Leung, Elo; Ng, Ho Kuen. On super vertex-graceful unicyclic graphs. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 1-22. http://geodesic.mathdoc.fr/item/CMJ_2009_59_1_a0/

[1] Cabannis, S., Mitchem, J., Low, R.: On edge-graceful regular graphs and trees. Ars Combin. 34 (1992), 129-142. | MR

[2] Gallian, J. A.: A dynamic survey of graph labeling. Electronic J. Combin. (2001), 6 1-144. | MR

[3] Keene, J., Simoson, A.: Balanced strands for asymmetric, edge-graceful spiders. Ars Combin. 42 (1996), 49-64. | MR | Zbl

[4] Kuan, Q., Lee, S.-M., Mitchem, J., Wang, A. K.: On edge-graceful unicyclic graphs. Congress. Numer. 61 (1988), 65-74. | MR

[5] Lee, L. M., Lee, S.-M., Murty, G.: On edge-graceful labelings of complete graphs-solutions of Lo's conjecture. Congress. Numer. 62 (1988), 225-233. | MR

[6] Lee, S.-M.: A conjecture on edge-graceful trees. Scientia, Ser. A 3 (1989), 45-57. | MR | Zbl

[7] Lee, S.-M.: New directions in the theory of edge-graceful graphs. Proceedings of the 6th Caribbean Conference on Combinatorics & Computing (1991), 216-231.

[8] Lee, S.-M.: On strongly indexable graphs and super vertex-graceful graphs, manuscript.

[9] Lee, S.-M., Leung, E.: On super vertex-graceful trees. Congress. Numer. 167 (2004), 3-26. | MR | Zbl

[10] Lee, S.-M., Ma, P., Valdes, L., Tong, S.-M.: On the edge-graceful grids. Congress. Numer. 154 (2002), 61-77. | MR | Zbl

[11] Lee, S.-M., Seah, E.: Edge-graceful labelings of regular complete $k$-partite graphs. Congress. Numer. 75 (1990), 41-50. | MR | Zbl

[12] Lee, S.-M., Seah, E.: On edge-gracefulness of the composition of step graphs with null graphs. Combinatorics, Algorithms, and Applications in Society for Industrial and Applied Mathematics (1991), 326-330. | MR | Zbl

[13] Lee, S.-M., Seah, E.: On the edge-graceful $(n, kn)$-multigraphs conjecture. J. Comb. Math. and Comb. Computing 9 (1991), 141-147. | MR | Zbl

[14] Lee, S.-M., Seah, E., Lo, S. P.: On edge-graceful 2-regular graphs. J. Comb. Math. and Comb. Computing 12 (1992), 109-117.

[15] Lee, S.-M., Seah, E., Tong, S.-M.: On the edge-magic and edge-graceful total graphs conjecture. Congress. Numer. 141 (1999), 37-48. | MR | Zbl

[16] Lee, S.-M., Seah, E., Wang, P. C.: On edge-gracefulness of the kth power graphs. Bull. Inst. Math. Academia Sinica 18 (1990), 1-11. | MR | Zbl

[17] Lo, S. P.: On edge-graceful labelings of graphs. Congress. Numer. 50 (1985), 231-241. | MR | Zbl

[18] Peng, J., Li, W.: Edge-gracefulness of $Cm \times Cn$. Proceedings of the Sixth Conference of Operations Research Society of China Hong Kong: Global-Link Publishing Company, Changsha (2000), 942-948.

[19] Mitchem, J., Simoson, A.: On edge-graceful and super-edge-graceful graphs. Ars Combin. 37 (1994), 97-111. | MR | Zbl

[20] Riskin, A., Wilson, S.: Edge graceful labellings of disjoint unions of cycles. Bulletin of the Institute of Combinatorics and its Applications 22 (1998), 53-58. | MR | Zbl

[21] Schaffer, K., Lee, S.-M.: Edge-graceful and edge-magic labelings of Cartesian products of graphs. Congress. Numer. 141 (1999), 119-134. | MR | Zbl

[22] Shiu, W. C., Lee, S.-M., Schaffer, K.: Some $k$-fold edge-graceful labelings of $(p,p-1)$-graphs. J. Comb. Math. and Comb. Computing 38 (2001), 81-95. | MR | Zbl

[23] Wilson, S., Riskin, A.: Edge-graceful labellings of odd cycles and their products. Bulletin of the ICA 24 (1998), 57-64. | MR | Zbl