Rigid extensions of $\ell$-groups of continuous functions
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 993-1014 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $C(X,\mathbb Z )$, $C(X,\mathbb Q )$ and $C(X)$ denote the $\ell $-groups of integer-valued, rational-valued and real-valued continuous functions on a topological space $X$, respectively. Characterizations are given for the extensions $C(X,\mathbb Z )\leq C(X,\mathbb Q )\leq C(X)$ to be rigid, major, and dense.
Let $C(X,\mathbb Z )$, $C(X,\mathbb Q )$ and $C(X)$ denote the $\ell $-groups of integer-valued, rational-valued and real-valued continuous functions on a topological space $X$, respectively. Characterizations are given for the extensions $C(X,\mathbb Z )\leq C(X,\mathbb Q )\leq C(X)$ to be rigid, major, and dense.
Classification : 06F20, 54C40, 54F65
Keywords: rigid extension; major extension; archimedean extension; dense extension
@article{CMJ_2008_58_4_a8,
     author = {Knox, Michelle L. and McGovern, Warren Wm.},
     title = {Rigid extensions of $\ell$-groups of continuous functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {993--1014},
     year = {2008},
     volume = {58},
     number = {4},
     mrnumber = {2471161},
     zbl = {1174.06341},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a8/}
}
TY  - JOUR
AU  - Knox, Michelle L.
AU  - McGovern, Warren Wm.
TI  - Rigid extensions of $\ell$-groups of continuous functions
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 993
EP  - 1014
VL  - 58
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a8/
LA  - en
ID  - CMJ_2008_58_4_a8
ER  - 
%0 Journal Article
%A Knox, Michelle L.
%A McGovern, Warren Wm.
%T Rigid extensions of $\ell$-groups of continuous functions
%J Czechoslovak Mathematical Journal
%D 2008
%P 993-1014
%V 58
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a8/
%G en
%F CMJ_2008_58_4_a8
Knox, Michelle L.; McGovern, Warren Wm. Rigid extensions of $\ell$-groups of continuous functions. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 993-1014. http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a8/

[1] Aron, E. R., Hager, A. W.: Convex vector lattices and $\ell$-algebras. Top. Its Appl. 12 (1981), 1-10. | MR

[2] Bigard, A., Keimel, K., Wolfenstein, S.: Groupes et anneaux rticuls. French Lecture Notes in Mathematics, 608. Springer-Verlag, Berlin-New York (1977). | MR

[3] Conrad, P., McAlister, D.: The completion of a lattice ordered group. J. Austral. Math. Soc. 9 (1969), 182-208. | DOI | MR

[4] Darnel, M.: Theory of Lattice-Ordered Groups. Monographs and Textbooks in Pure and Applied Mathematics, 187, Marcel Dekker, Inc., New York (1995). | MR | Zbl

[5] Engelking, R.: General Topology, Sigma Series in Pure Mathematics, Vol. 6, Heldermann Verlag, Berlin. (1989). | MR

[6] Hager, A., Kimber, C., McGovern, W. Wm.: Unique $a$-closure for some $\ell$-groups of rational valued functions. Czech. Math. J. 55 (2005), 409-421. | DOI | MR | Zbl

[7] Hager, A., Martinez, J.: Singular archimedean lattice-ordered groups. Algebra Universalis. 40 (1998), 119-147. | DOI | MR | Zbl

[8] Henriksen, M., Woods, R. G.: Cozero-complemented spaces; when the space of minimal prime ideals of a $C(X)$ is compact. Top. Its Applications 141 (2004), 147-170. | MR | Zbl

[9] Porter, J., Woods, R. G.: Extensions and Absolutes of Hausdorff Spaces. Springer-Verlag, New York (1988). | MR | Zbl

[10] Wage, M. L.: The dimension of product spaces. Proc. Natl. Acad. Sci. 75 (1978), 4671-4672. | DOI | MR | Zbl