Keywords: Navier-Stokes equations; incompressible fluid; rigid bodies
@article{CMJ_2008_58_4_a7,
author = {Cumsille, Patricio and Takahashi, Tak\'eo},
title = {Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid},
journal = {Czechoslovak Mathematical Journal},
pages = {961--992},
year = {2008},
volume = {58},
number = {4},
mrnumber = {2471160},
zbl = {1174.35092},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a7/}
}
TY - JOUR AU - Cumsille, Patricio AU - Takahashi, Takéo TI - Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid JO - Czechoslovak Mathematical Journal PY - 2008 SP - 961 EP - 992 VL - 58 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a7/ LA - en ID - CMJ_2008_58_4_a7 ER -
%0 Journal Article %A Cumsille, Patricio %A Takahashi, Takéo %T Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid %J Czechoslovak Mathematical Journal %D 2008 %P 961-992 %V 58 %N 4 %U http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a7/ %G en %F CMJ_2008_58_4_a7
Cumsille, Patricio; Takahashi, Takéo. Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 961-992. http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a7/
[1] Arnold, V. I.: Ordinary Differential Equations. Springer Berlin (1992); translated from the third Russian edition. | MR | Zbl
[2] Conca, C., Martín, J. San, Tucsnak, M.: Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Commun. Partial Differ. Equations 25 (2000), 1019-1042. | MR
[3] Cumsille, P., Tucsnak, M.: Wellposedness for the Navier-Stokes flow in the exterior of a rotating obstacle. Math. Methods Appl. Sci. 29 (2006), 595-623. | DOI | MR
[4] Desjardins, B., Esteban, M. J.: Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146 (1999), 59-71. | DOI | MR | Zbl
[5] Farwiq, R., Sohr, H.: The stationary and non-stationary Stokes system in exterior domains with non-zero divergence and non-zero boundary values. Math. Methods Appl. Sci. 17 (1994), 269-291. | DOI | MR
[6] Feireisl, E.: On the motion of rigid bodies in a viscous fluid. Appl. Math. 47 (2002), 463-484. | DOI | MR | Zbl
[7] Feireisl, E.: On the motion of rigid bodies in a viscous compressible fluid. Arch. Ration. Mech. Anal. 167 (2003), 281-308. | DOI | MR | Zbl
[8] Galdi, G. P.: On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications. Handbook of Mathematical Fluid Dynamics, Vol. I Elsevier Amsterdam (2002), 653-791. | MR
[9] Galdi, G. P., Silvestre, A. L.: Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques. Nonlinear problems in mathematical physics and related topics, I. Int. Math. Ser. Vol. 1 Kluwer/Plenum New York (2002), 121-144. | DOI | MR | Zbl
[10] Galdi, G. P., Silvestre, A. L.: Strong solutions to the Navier-Stokes equations around a rotating obstacle. Arch. Ration. Mech. Anal. 176 (2005), 331-350. | DOI | MR | Zbl
[11] Maday, C. Grandmont,Y.: Existence for an unsteady fluid-structure interaction problem. M2AN, Math. Model. Numer. Anal. 34 (2000), 609-636. | DOI | MR | Zbl
[12] Hartman, P.: Ordinary Differential Equations. Birkhäuser Boston (1982). | MR | Zbl
[13] Heywood, J. G.: The Navier-Stokes equations: On the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29 (1980), 639-681. | DOI | MR | Zbl
[14] Hishida, T.: An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle. Arch. Rational Mech. Anal. 150 (1999), 307-348. | DOI | MR | Zbl
[15] Hoffmann, K.-H., Starovoitov, V. N.: On a motion of a solid body in a viscous fluid. Two-dimensional case. Adv. Math. Sci. Appl. 9 (1999), 633-648. | MR | Zbl
[16] Inoue, A., Wakimoto, M.: On existence of solutions of the Navier-Stokes equation in a time dependent domain. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), 303-319. | MR | Zbl
[17] Lions, J.-L., Magenes, E.: Non-homogeneous boundary value problems and applications. Vol. I. Springer Berlin-Heidelberg-New York (1972). | MR | Zbl
[18] Martín, J. A. San, Starovoitov, V., Tucsnak, M.: Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161 (2002), 113-147. | DOI | MR
[19] Serre, D.: Chute libre d'un solide dans un fluide visqueux incompressible. Existence. Japan J. Appl. Math. 4 (1987), 99-110 French. | DOI | MR | Zbl
[20] Silvestre, A. L.: On the slow motion of a self-propelled rigid body in a viscous incompressible fluid. J. Math. Anal. Appl. 274 (2002), 203-227. | DOI | MR | Zbl
[21] Takahashi, T.: Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differ. Equ. 8 (2003), 1499-1532. | MR | Zbl
[22] Takahashi, T., Tucsnak, M.: Global strong solutions for the two dimensional motion of an infinite cylinder in a viscous fluid. J. Math. Fluid Mech. 6 (2004), 53-77. | DOI | MR | Zbl
[23] Temam, R.: Navier-Stokes equations. Theory and numerical analysis, 3rd ed., with an appendix by F. Thomasset. North-Holland Amsterdam-New York-Oxford (1984). | MR