Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 961-992 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we consider the interaction between a rigid body and an incompressible, homogeneous, viscous fluid. This fluid-solid system is assumed to fill the whole space $\Bbb R^d$, $d=2$ or $3$. The equations for the fluid are the classical Navier-Stokes equations whereas the motion of the rigid body is governed by the standard conservation laws of linear and angular momentum. The time variation of the fluid domain (due to the motion of the rigid body) is not known {\it a priori}, so we deal with a free boundary value problem. \endgraf We improve the known results by proving a complete wellposedness result: our main result yields a local in time existence and uniqueness of strong solutions for $d=2$ or $3$. Moreover, we prove that the solution is global in time for $d=2$ and also for $d=3$ if the data are small enough.
In this paper, we consider the interaction between a rigid body and an incompressible, homogeneous, viscous fluid. This fluid-solid system is assumed to fill the whole space $\Bbb R^d$, $d=2$ or $3$. The equations for the fluid are the classical Navier-Stokes equations whereas the motion of the rigid body is governed by the standard conservation laws of linear and angular momentum. The time variation of the fluid domain (due to the motion of the rigid body) is not known {\it a priori}, so we deal with a free boundary value problem. \endgraf We improve the known results by proving a complete wellposedness result: our main result yields a local in time existence and uniqueness of strong solutions for $d=2$ or $3$. Moreover, we prove that the solution is global in time for $d=2$ and also for $d=3$ if the data are small enough.
Classification : 35B30, 35Q30, 35R35, 76D03, 76D05
Keywords: Navier-Stokes equations; incompressible fluid; rigid bodies
@article{CMJ_2008_58_4_a7,
     author = {Cumsille, Patricio and Takahashi, Tak\'eo},
     title = {Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid},
     journal = {Czechoslovak Mathematical Journal},
     pages = {961--992},
     year = {2008},
     volume = {58},
     number = {4},
     mrnumber = {2471160},
     zbl = {1174.35092},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a7/}
}
TY  - JOUR
AU  - Cumsille, Patricio
AU  - Takahashi, Takéo
TI  - Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 961
EP  - 992
VL  - 58
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a7/
LA  - en
ID  - CMJ_2008_58_4_a7
ER  - 
%0 Journal Article
%A Cumsille, Patricio
%A Takahashi, Takéo
%T Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid
%J Czechoslovak Mathematical Journal
%D 2008
%P 961-992
%V 58
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a7/
%G en
%F CMJ_2008_58_4_a7
Cumsille, Patricio; Takahashi, Takéo. Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 961-992. http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a7/

[1] Arnold, V. I.: Ordinary Differential Equations. Springer Berlin (1992); translated from the third Russian edition. | MR | Zbl

[2] Conca, C., Martín, J. San, Tucsnak, M.: Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Commun. Partial Differ. Equations 25 (2000), 1019-1042. | MR

[3] Cumsille, P., Tucsnak, M.: Wellposedness for the Navier-Stokes flow in the exterior of a rotating obstacle. Math. Methods Appl. Sci. 29 (2006), 595-623. | DOI | MR

[4] Desjardins, B., Esteban, M. J.: Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146 (1999), 59-71. | DOI | MR | Zbl

[5] Farwiq, R., Sohr, H.: The stationary and non-stationary Stokes system in exterior domains with non-zero divergence and non-zero boundary values. Math. Methods Appl. Sci. 17 (1994), 269-291. | DOI | MR

[6] Feireisl, E.: On the motion of rigid bodies in a viscous fluid. Appl. Math. 47 (2002), 463-484. | DOI | MR | Zbl

[7] Feireisl, E.: On the motion of rigid bodies in a viscous compressible fluid. Arch. Ration. Mech. Anal. 167 (2003), 281-308. | DOI | MR | Zbl

[8] Galdi, G. P.: On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications. Handbook of Mathematical Fluid Dynamics, Vol. I Elsevier Amsterdam (2002), 653-791. | MR

[9] Galdi, G. P., Silvestre, A. L.: Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques. Nonlinear problems in mathematical physics and related topics, I. Int. Math. Ser. Vol. 1 Kluwer/Plenum New York (2002), 121-144. | DOI | MR | Zbl

[10] Galdi, G. P., Silvestre, A. L.: Strong solutions to the Navier-Stokes equations around a rotating obstacle. Arch. Ration. Mech. Anal. 176 (2005), 331-350. | DOI | MR | Zbl

[11] Maday, C. Grandmont,Y.: Existence for an unsteady fluid-structure interaction problem. M2AN, Math. Model. Numer. Anal. 34 (2000), 609-636. | DOI | MR | Zbl

[12] Hartman, P.: Ordinary Differential Equations. Birkhäuser Boston (1982). | MR | Zbl

[13] Heywood, J. G.: The Navier-Stokes equations: On the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29 (1980), 639-681. | DOI | MR | Zbl

[14] Hishida, T.: An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle. Arch. Rational Mech. Anal. 150 (1999), 307-348. | DOI | MR | Zbl

[15] Hoffmann, K.-H., Starovoitov, V. N.: On a motion of a solid body in a viscous fluid. Two-dimensional case. Adv. Math. Sci. Appl. 9 (1999), 633-648. | MR | Zbl

[16] Inoue, A., Wakimoto, M.: On existence of solutions of the Navier-Stokes equation in a time dependent domain. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), 303-319. | MR | Zbl

[17] Lions, J.-L., Magenes, E.: Non-homogeneous boundary value problems and applications. Vol. I. Springer Berlin-Heidelberg-New York (1972). | MR | Zbl

[18] Martín, J. A. San, Starovoitov, V., Tucsnak, M.: Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161 (2002), 113-147. | DOI | MR

[19] Serre, D.: Chute libre d'un solide dans un fluide visqueux incompressible. Existence. Japan J. Appl. Math. 4 (1987), 99-110 French. | DOI | MR | Zbl

[20] Silvestre, A. L.: On the slow motion of a self-propelled rigid body in a viscous incompressible fluid. J. Math. Anal. Appl. 274 (2002), 203-227. | DOI | MR | Zbl

[21] Takahashi, T.: Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differ. Equ. 8 (2003), 1499-1532. | MR | Zbl

[22] Takahashi, T., Tucsnak, M.: Global strong solutions for the two dimensional motion of an infinite cylinder in a viscous fluid. J. Math. Fluid Mech. 6 (2004), 53-77. | DOI | MR | Zbl

[23] Temam, R.: Navier-Stokes equations. Theory and numerical analysis, 3rd ed., with an appendix by F. Thomasset. North-Holland Amsterdam-New York-Oxford (1984). | MR