Keywords: eigenvalue; Laplacian index; algebraic connectivity; semi-regular graph; regular graph; Hamiltonian graph; planar graph
@article{CMJ_2008_58_4_a6,
author = {Liu, BoLian and Chen, Zhibo and Liu, Muhuo},
title = {On graphs with the largest {Laplacian} index},
journal = {Czechoslovak Mathematical Journal},
pages = {949--960},
year = {2008},
volume = {58},
number = {4},
mrnumber = {2471159},
zbl = {1174.05078},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a6/}
}
Liu, BoLian; Chen, Zhibo; Liu, Muhuo. On graphs with the largest Laplacian index. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 949-960. http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a6/
[1] Bonday, J. A., Murty, U. S. R.: Graph Theory with Applications. Macmillan London (1976).
[2] Cvetkovic, D. M., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Applications. VEB Deutscher Verlag der Wissenschaften Berlin (1980).
[3] Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Math. J. 23 (1973), 298-305. | MR | Zbl
[4] Gracssi, R.: Relevant inequalities in graph connectivity. Arch. Ineqal. Appl. 2 (2004), 183-198. | MR
[5] Gutman, I.: The star is the tree with greatest Laplacian eignvalue. Kragujevac J. Math. 24 (2002), 61-65. | MR
[6] Haemers, W. H.: Interlacing eigenvalues and graphs. Linear Algebra Appl. 227-228 (1995), 593-616. | MR | Zbl
[7] Harary, F.: Graph Theory. Addison-Wesley Reading (1969). | MR | Zbl
[8] Merris, R.: Laplacian matrices of graphs: A survey. Linear Algebra Appl. 197-198 (1994), 143-176. | MR | Zbl