On the vanishing viscosity method for first order differential-functional IBVP
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 927-947 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider the initial-boundary value problem for first order differential-functional equations. We present the `vanishing viscosity' method in order to obtain viscosity solutions. Our formulation includes problems with a retarded and deviated argument and differential-integral equations.
We consider the initial-boundary value problem for first order differential-functional equations. We present the `vanishing viscosity' method in order to obtain viscosity solutions. Our formulation includes problems with a retarded and deviated argument and differential-integral equations.
Classification : 35D05, 35K60, 35R10
Keywords: viscosity solutions; first order equation; parabolic equation; differential functional equations
@article{CMJ_2008_58_4_a5,
     author = {Topolski, Krzysztof A.},
     title = {On the vanishing viscosity method for first order differential-functional {IBVP}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {927--947},
     year = {2008},
     volume = {58},
     number = {4},
     mrnumber = {2471158},
     zbl = {1174.35018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a5/}
}
TY  - JOUR
AU  - Topolski, Krzysztof A.
TI  - On the vanishing viscosity method for first order differential-functional IBVP
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 927
EP  - 947
VL  - 58
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a5/
LA  - en
ID  - CMJ_2008_58_4_a5
ER  - 
%0 Journal Article
%A Topolski, Krzysztof A.
%T On the vanishing viscosity method for first order differential-functional IBVP
%J Czechoslovak Mathematical Journal
%D 2008
%P 927-947
%V 58
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a5/
%G en
%F CMJ_2008_58_4_a5
Topolski, Krzysztof A. On the vanishing viscosity method for first order differential-functional IBVP. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 927-947. http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a5/

[1] Alvarez, O., Tourin, A.: Viscosity solutions of nonlinear integro-differential equations. Ann. Inst. H. Poincaré anal. Non Linaire 13 (1996), 293-317. | DOI | MR | Zbl

[2] Bardi, M., Crandall, M. G., Evans, L. C., Soner, H. M., Souganidis, P. E.: Viscosity Solutions and Applications. Springer-Verlag Berlin-Heidelberg-New York (1997).

[3] Brandi, P., Ceppitelli, R.: On the existance of solutions of nonlinear functional partial differential equations of the first order. Atti Sem. Mat. Fis. Univ. Modena 29 (1980), 166-186. | MR

[4] Brandi, P., Ceppitelli, R.: Existence, uniqueness and continuous dependence for a hereditary nonlinear functional partial differential equation of the first order. Ann. Polon. Math. 47 (1986), 121-136. | DOI | MR | Zbl

[5] Brzychczy, S.: Chaplygin's method for a system of nonlinear parabolic differential-functional equations. Differen. Urav. 22 (1986), 705-708 Russian. | MR

[6] Brzychczy, S.: Existence of solutions for non-linear systems of differential-functional equations of parabolic type in an arbitrary domain. Ann. Polon. Math. 47 (1987), 309-317. | DOI | MR

[7] Crandall, M. G., Ishii, H., Lions, P. L.: User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992), 1-67. | DOI | MR | Zbl

[8] Crandall, M. G., Lions, P. L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277 (1983), 1-42. | DOI | MR | Zbl

[9] Hale, J. K., Lunel, S. M. V.: Introduction to Functional Differential Equations. Springer-Verlag New York (1993). | MR | Zbl

[10] Ishii, H., Koike, S.: Viscosity solutions of functional differential equations. Adv. Math. Sci. Appl. Gakkotosho, Tokyo 3 (1993/94), 191-218. | MR

[11] Jakobsen, E. R., Karlsen, K. H.: Continuous dependence estimates for viscosity solutions of integro-PDFs. J. Differential Equations 212 (2005), 278-318. | DOI | MR

[12] Kamont, Z.: Initial value problems for hyperbolic differential-functional systems. Boll. Un. Mat. Ital. 171 (1994), 965-984. | MR | Zbl

[13] Kruzkov, S. N.: Generalized solutions of first order nonlinear equations in several independent variables I. Mat. Sb. 70 (1966), 394-415 II, Mat.Sb. (N.S) 72 (1967), 93-116 Russian. | MR

[14] Ladyzhenskaya, O. A., Solonikov, V. A., Uralceva, N. N.: Linear and Quasilinear Equations of Parabolic Type. Nauka, Moskva (1967), Russian Translation of Mathematical Monographs, Vol. 23, Am. Math. Soc., Providence, R.I. (1968). | MR

[15] Lions, P. L.: Generalized Solutions of Hamilton-Jacobi Equations. Pitman, London (1982). | MR | Zbl

[16] Sayah, A.: Equations d'Hamilton-Jacobi du premier ordre avec termes integro-differentiales, Parties I & II. Comm. Partial Differential Equations 16 (1991), 1057-1093. | DOI | MR

[17] Topolski, K.: On the uniqueness of viscosity solutions for first order partial differential-functional equations. Ann. Polon. Math. 59 (1994), 65-75. | DOI | MR | Zbl

[18] Topolski, K.: Parabolic differential-functional inequalities in a viscosity sense. Ann. Polon. Math. 68 (1998), 17-25. | DOI | MR

[19] Topolski, K. A.: On the existence of classical solutions for differential-functional IBVP. Abstr. Appl. Anal. 3 (1998), 363-375. | DOI | MR

[20] Topolski, K. A.: On the existence of viscosity solutions for the differential-functional Cauchy problem. Comment. Math. 39 (1999), 207-223. | MR | Zbl

[21] Topolski, Krzysztof A.: On the existence of viscosity solution for the parabolic differential-functional Cauchy problem. Preprint.