Compact images of spaces with a weaker metric topology
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 921-926 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

If $X$ is a space that can be mapped onto a metric space by a one-to-one mapping, then $X$ is said to have a weaker metric topology. \endgraf In this paper, we give characterizations of sequence-covering compact images and sequentially-quotient compact images of spaces with a weaker metric topology. The main results are that \endgraf (1) $Y$ is a sequence-covering compact image of a space with a weaker metric topology if and only if $Y$ has a sequence $\{\mathcal F_i\}_{i\in \mathbb N}$ of point-finite $cs$-covers such that $ {\bigcap _{i\in \mathbb N}}\mathop{\rm st} (y,\mathcal F_i)=\{y\}$ for each $y\in Y$. \endgraf (2) $Y$ is a sequentially-quotient compact image of a space with a weaker metric topology if and only if $Y$ has a sequence $\{\mathcal F_i\}_{i\in \mathbb N}$ of point-finite $cs^*$-covers such that ${\bigcap _{i\in \mathbb N}}\mathop{\rm st} (y,\mathcal F_i)=\{y\}$ for each $y\in Y$.
If $X$ is a space that can be mapped onto a metric space by a one-to-one mapping, then $X$ is said to have a weaker metric topology. \endgraf In this paper, we give characterizations of sequence-covering compact images and sequentially-quotient compact images of spaces with a weaker metric topology. The main results are that \endgraf (1) $Y$ is a sequence-covering compact image of a space with a weaker metric topology if and only if $Y$ has a sequence $\{\mathcal F_i\}_{i\in \mathbb N}$ of point-finite $cs$-covers such that $ {\bigcap _{i\in \mathbb N}}\mathop{\rm st} (y,\mathcal F_i)=\{y\}$ for each $y\in Y$. \endgraf (2) $Y$ is a sequentially-quotient compact image of a space with a weaker metric topology if and only if $Y$ has a sequence $\{\mathcal F_i\}_{i\in \mathbb N}$ of point-finite $cs^*$-covers such that ${\bigcap _{i\in \mathbb N}}\mathop{\rm st} (y,\mathcal F_i)=\{y\}$ for each $y\in Y$.
Classification : 54C10, 54C40, 54E99
Keywords: sequence-covering mappings; sequentially-quotient mappings; compact mappings; weaker metric topology
@article{CMJ_2008_58_4_a4,
     author = {Yan, Peng-fei and L\"u, Cheng},
     title = {Compact images of spaces with a weaker metric topology},
     journal = {Czechoslovak Mathematical Journal},
     pages = {921--926},
     year = {2008},
     volume = {58},
     number = {4},
     mrnumber = {2471157},
     zbl = {1174.54022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a4/}
}
TY  - JOUR
AU  - Yan, Peng-fei
AU  - Lü, Cheng
TI  - Compact images of spaces with a weaker metric topology
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 921
EP  - 926
VL  - 58
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a4/
LA  - en
ID  - CMJ_2008_58_4_a4
ER  - 
%0 Journal Article
%A Yan, Peng-fei
%A Lü, Cheng
%T Compact images of spaces with a weaker metric topology
%J Czechoslovak Mathematical Journal
%D 2008
%P 921-926
%V 58
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a4/
%G en
%F CMJ_2008_58_4_a4
Yan, Peng-fei; Lü, Cheng. Compact images of spaces with a weaker metric topology. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 921-926. http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a4/

[1] Arhangel'skii, A. V.: Mappings and spaces. Russian Math. Surveys 21 (1966), 115-162. | DOI | MR

[2] Chaber, J.: Mappings onto metric spaces. Topology Appl. 14 (1982), 31-42. | DOI | MR | Zbl

[3] Engelking, R.: General Topology. PWN, Warszawa (1977). | MR | Zbl

[4] Foged, L.: A characterization of closed images of metric spaces. Proc AMS 95 (1985), 487-490. | MR | Zbl

[5] Franklin, S. P.: Spaces in which sequences suffice. Fund. Math. 57 (1965), 107-115. | DOI | MR | Zbl

[6] Ge, Y.: On compact images of locally separable metric spaces. Topology Proc. 27 (2003), 351-360. | MR | Zbl

[7] Gruenhage, G., Michael, E., Tanaka, Y.: Spaces determined by point-countable covers. Pacific J. Math. 113 (1984), 303-332. | DOI | MR | Zbl

[8] Liu, C., Tanaka, Y.: Spaces with certain compact-countable k-network, and questions. Questions Answers Gen. Topology 14 (1996), 15-37. | MR

[9] Lin, S.: Point-Countable Covers and Sequence-Covering Mappings. Chinese Science Press, Beijing (2002). | MR | Zbl

[10] Lin, S.: A note on sequence-covering mappings. Acta Math Hungar 107 (2005), 193-197. | MR | Zbl

[11] Lin, S., Liu, C.: On spaces with point-countable $cs$-networks. Topology Appl. 74 (1996), 51-60. | DOI | MR | Zbl

[12] Lin, S., Yan, P.: Sequence-covering maps of metric spaces. Topology Appl. 109 (2001), 301-314. | DOI | MR | Zbl

[13] Lin, S., Yan, P.: On sequence-covering compact mappings. Acta Math. Sinica 44 (2001), 175-182. | MR | Zbl

[14] Tanaka, Y.: Symmetric spaces, $g$-developable spaces and $g$-metrizable spaces. Math. Japonica 36 (1991), 71-84. | MR | Zbl

[15] Tanaka, Y., Xia, S.: Certain $s$-images of locally separable metric spaces. Questions Answers Gen. Topology 14 (1996), 217-231. | MR | Zbl

[16] Yan, P.: The compact images of metric spaces. J. Math. Study 30 (1997), 185-187. | MR | Zbl

[17] Yan, P.: On strong sequence-covering compact mapping. Northeastern Math. J. 14 (1998), 341-344. | MR