A characterization of totally $\eta$-umbilical real hypersurfaces and ruled real hypersurfaces of a complex space form
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1279-1287 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give a characterization of totally $\eta $-umbilical real hypersurfaces and ruled real hypersurfaces of a complex space form in terms of totally umbilical condition for the holomorphic distribution on real hypersurfaces. We prove that if the shape operator $A$ of a real hypersurface $M$ of a complex space form $M^n(c)$, $c\neq 0$, $n\geq 3$, satisfies $g(AX,Y)=ag(X,Y)$ for any $X,Y\in T_0(x)$, $a$ being a function, where $T_0$ is the holomorphic distribution on $M$, then $M$ is a totally $\eta $-umbilical real hypersurface or locally congruent to a ruled real hypersurface. This condition for the shape operator is a generalization of the notion of $\eta $-umbilical real hypersurfaces.
We give a characterization of totally $\eta $-umbilical real hypersurfaces and ruled real hypersurfaces of a complex space form in terms of totally umbilical condition for the holomorphic distribution on real hypersurfaces. We prove that if the shape operator $A$ of a real hypersurface $M$ of a complex space form $M^n(c)$, $c\neq 0$, $n\geq 3$, satisfies $g(AX,Y)=ag(X,Y)$ for any $X,Y\in T_0(x)$, $a$ being a function, where $T_0$ is the holomorphic distribution on $M$, then $M$ is a totally $\eta $-umbilical real hypersurface or locally congruent to a ruled real hypersurface. This condition for the shape operator is a generalization of the notion of $\eta $-umbilical real hypersurfaces.
Classification : 53C25, 53C40, 53C55
Keywords: real hypersurface; totally $\eta $-umbilical real hypersurface; ruled real hypersurface
@article{CMJ_2008_58_4_a30,
     author = {Kon, Mayuko},
     title = {A characterization of totally $\eta$-umbilical real hypersurfaces and ruled real hypersurfaces of a complex space form},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1279--1287},
     year = {2008},
     volume = {58},
     number = {4},
     mrnumber = {2471183},
     zbl = {1174.53032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a30/}
}
TY  - JOUR
AU  - Kon, Mayuko
TI  - A characterization of totally $\eta$-umbilical real hypersurfaces and ruled real hypersurfaces of a complex space form
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 1279
EP  - 1287
VL  - 58
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a30/
LA  - en
ID  - CMJ_2008_58_4_a30
ER  - 
%0 Journal Article
%A Kon, Mayuko
%T A characterization of totally $\eta$-umbilical real hypersurfaces and ruled real hypersurfaces of a complex space form
%J Czechoslovak Mathematical Journal
%D 2008
%P 1279-1287
%V 58
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a30/
%G en
%F CMJ_2008_58_4_a30
Kon, Mayuko. A characterization of totally $\eta$-umbilical real hypersurfaces and ruled real hypersurfaces of a complex space form. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1279-1287. http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a30/

[1] Cecil, T. E., Ryan, P. J.: Focal sets and real hypersurfaces in complex projective space. Trans. Am. Math. Soc. 269 (1982), 481-499. | MR | Zbl

[2] Ahn, S. S., Lee, S. B., Suh, Y. J.: On ruled real hypersurfaces in a complex space form. Tsukuba J. Math. 17 (1993), 311-322. | DOI | MR | Zbl

[3] Kimura, M.: Sectional curvatures of holomorphic planes on a real hypersurface in $P^n(c)$. Math. Ann. 276 (1987), 487-497. | DOI | MR | Zbl

[4] Kimura, M., Maeda, S.: On real hypersurfaces of a complex projective space. Math. Z. 202 (1989), 299-311. | DOI | MR | Zbl

[5] Kon, M.: Pseudo-Einstein real hyprersurfaces in complex space forms. J. Differ. Geom. 14 (1979), 339-354. | DOI | MR

[6] Lohnherr, M., Reckziegel, H.: On ruled real hypersurfaces in complex space forms. Geom. Dedicata 74 (1999), 267-286. | DOI | MR | Zbl

[7] Montiel, S.: Real hypersurfaces of a complex hyperbolic space. J. Math. Soc. Japan 37 (1985), 515-535. | DOI | MR | Zbl

[8] Ortega, M., Pérez, J. D.: Constant holomorphic sectional curvature and type number of real hypersurfaces of complex hyperbolic space. Proc. 4th Internat. Congress of Geometry, Thessaloniki, 1996 Aristotle University of Thessaloniki Thessaloniki (1997). | MR

[9] Ortega, M., Pérez, J. D., Suh, Y. J.: Real hypersurfaces with constant totally real sectional curvature in a complex space form. Czech. Math. J. 50 (2000), 531-537. | DOI | MR

[10] Sohn, D. J., Suh, Y. J.: Classification of real hypersurfaces in complex hyperbolic space in terms of constant $\varphi$-holomorphic sectional curvatures. Kyngpook Math. J. 35 (1996), 801-819. | MR

[11] Takagi, R.: Real hypersurfaces in a complex projective space with constant principal curvatures. J. Math. Soc. Japan 27 (1975), 43-53. | DOI | MR | Zbl

[12] Tashiro, Y., Tachibana, S.: On Fubinian and $C$-Fubinian manifolds. Kōdai Math. Sem. Rep. 15 (1963), 176-183. | DOI | MR | Zbl

[13] Yano, K., Kon, Masahiro: $CR$ Submanifolds of Kaehlerian and Sasakian Manifolds. Birkhäuser Boston-Basel-Stuttgart (1983). | MR | Zbl