Equienergetic self-complementary graphs
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 911-919 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper equienergetic self-complementary graphs on $p$ vertices for every $p=4k$, $k \geq 2$ and $p=24t+1$, $t \geq 3$ are constructed.
In this paper equienergetic self-complementary graphs on $p$ vertices for every $p=4k$, $k \geq 2$ and $p=24t+1$, $t \geq 3$ are constructed.
Classification : 05C50
Keywords: spectrum; self-complementary graph; energy of graphs
@article{CMJ_2008_58_4_a3,
     author = {Indulal, G. and Vijayakumar, A.},
     title = {Equienergetic self-complementary graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {911--919},
     year = {2008},
     volume = {58},
     number = {4},
     mrnumber = {2471156},
     zbl = {1174.05077},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a3/}
}
TY  - JOUR
AU  - Indulal, G.
AU  - Vijayakumar, A.
TI  - Equienergetic self-complementary graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 911
EP  - 919
VL  - 58
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a3/
LA  - en
ID  - CMJ_2008_58_4_a3
ER  - 
%0 Journal Article
%A Indulal, G.
%A Vijayakumar, A.
%T Equienergetic self-complementary graphs
%J Czechoslovak Mathematical Journal
%D 2008
%P 911-919
%V 58
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a3/
%G en
%F CMJ_2008_58_4_a3
Indulal, G.; Vijayakumar, A. Equienergetic self-complementary graphs. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 911-919. http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a3/

[1] Balakrishnan, R.: A Text Book of Graph Theory. Springer (2000). | MR

[2] Balakrishnan, R.: The energy of a graph. Linear Algebra Appl. 387 (2004), 287-295. | DOI | MR | Zbl

[3] Coulson, C. A.: Proc. Cambridge Phil. Soc. 36 (1940), 201-203. | Zbl

[4] Cvetkovic, D. M., Doob, M., Sachs, H.: Spectra of Graphs-Theory and Applications. Academic Press (1980). | MR

[5] Stevanovi'c, D.: Energy and NEPS of graphs. Linear Multilinear Algebra 53 (2005), 67-74. | DOI | MR

[6] Farrugia, A.: Self-complementary graphs and generalisations: A comprehensive reference manual. M. Sc. Thesis, University of Malta (1999).

[7] Gutman, I.: The energy of a graph. Ber. Math. Statist. Sekt. Forschungszenturm Graz 103 (1978), 1-22. | MR | Zbl

[8] Gutman, I.: The energy of a graph: old and new results. A. Betten, A. Kohnert, R. Laue, A. Wassermann Algebraic Combinatorics and Applications, Springer (2000), 196-211. | MR

[9] Gutman, I.: Topology and stability of conjugated hydrocarbons. The dependence of total $\pi$-electron energy on molecular topology. J. Serb. Chem. Soc. 70 (2005), 441-456. | DOI

[10] Indulal, G., Vijayakumar, A.: On a pair of equienergetic graphs. MATCH Commun. Math. Comput. Chem. 55 (2006), 83-90. | MR | Zbl

[11] Indulal, G., Vijayakumar, A.: Energies of some non-regular graphs. J. Math. Chem 42 (2007), 377-386. | DOI | MR

[12] Ramane, H. S., Gutman, I., Walikar, H. B., Halkarni, S. B.: Another class of equienergetic graphs. Kragujevac. J. Math. 26 (2004), 15-18. | MR | Zbl