Unconditional ideals of finite rank operators
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1257-1278 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $X$ be a Banach space. We give characterizations of when ${\cal F}(Y,X)$ is a $u$-ideal in ${\cal W}(Y,X)$ for every Banach space $Y$ in terms of nets of finite rank operators approximating weakly compact operators. Similar characterizations are given for the cases when ${\cal F}(X,Y)$ is a $u$-ideal in ${\cal W}(X,Y)$ for every Banach space $Y$, when ${\cal F}(Y,X)$ is a $u$-ideal in ${\cal W}(Y,X^{**})$ for every Banach space $Y$, and when ${\cal F}(Y,X)$ is a $u$-ideal in ${\cal K}(Y,X^{**})$ for every Banach space $Y$.
Let $X$ be a Banach space. We give characterizations of when ${\cal F}(Y,X)$ is a $u$-ideal in ${\cal W}(Y,X)$ for every Banach space $Y$ in terms of nets of finite rank operators approximating weakly compact operators. Similar characterizations are given for the cases when ${\cal F}(X,Y)$ is a $u$-ideal in ${\cal W}(X,Y)$ for every Banach space $Y$, when ${\cal F}(Y,X)$ is a $u$-ideal in ${\cal W}(Y,X^{**})$ for every Banach space $Y$, and when ${\cal F}(Y,X)$ is a $u$-ideal in ${\cal K}(Y,X^{**})$ for every Banach space $Y$.
Classification : 46B04, 46B20, 46B28, 47L20
Keywords: $u$-ideals; finite rank; compact; and weakly compact operators; Hahn-Banach extension operators
@article{CMJ_2008_58_4_a29,
     author = {Abrahamsen, Trond A. and Lima, Asvald and Lima, Vegard},
     title = {Unconditional ideals of finite rank operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1257--1278},
     year = {2008},
     volume = {58},
     number = {4},
     mrnumber = {2471182},
     zbl = {1174.46003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a29/}
}
TY  - JOUR
AU  - Abrahamsen, Trond A.
AU  - Lima, Asvald
AU  - Lima, Vegard
TI  - Unconditional ideals of finite rank operators
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 1257
EP  - 1278
VL  - 58
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a29/
LA  - en
ID  - CMJ_2008_58_4_a29
ER  - 
%0 Journal Article
%A Abrahamsen, Trond A.
%A Lima, Asvald
%A Lima, Vegard
%T Unconditional ideals of finite rank operators
%J Czechoslovak Mathematical Journal
%D 2008
%P 1257-1278
%V 58
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a29/
%G en
%F CMJ_2008_58_4_a29
Abrahamsen, Trond A.; Lima, Asvald; Lima, Vegard. Unconditional ideals of finite rank operators. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1257-1278. http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a29/

[1] Belobrov, P. K.: Minimal extension of linear functionals onto the second conjugate space. Mat. Zametki 27 (1980), 439-445, 494. | MR

[2] Casazza, P. G., Kalton, N. J.: Notes on approximation properties in separable {Banach} spaces. Geometry of Banach Spaces, Proc. Conf. Strobl 1989, London Mathematical Society Lecture Note Series 158 (P.F.X. Müller and W. Schachermayer, eds.), Cambridge University Press (1990), 49-63. | MR

[3] Davis, W. J., Figiel, T., Johnson, W. B., Pełczyński, A.: Factoring weakly compact operators. J. Functional Analysis 17 (1974), 311-327. | DOI | MR

[4] Feder, M., Saphar, P.: Spaces of compact operators and their dual spaces. Israel J. Math. 21 (1975), 38-49. | DOI | MR | Zbl

[5] Godefroy, G., Kalton, N. J., Saphar, P. D.: Unconditional ideals in {Banach} spaces. Studia Math. 104 (1993), 13-59. | MR | Zbl

[6] Godefroy, G., Saphar, P.: Duality in spaces of operators and smooth norms on {Banach} spaces. Illinois J. Math. 32 (1988), 672-695. | DOI | MR | Zbl

[7] Harmand, P., Werner, D., Werner, W.: $M$-ideals in Banach Spaces and Banach Algebras. Lecture Notes in Mathematics, vol. 1547, Springer-Verlag, Berlin (1993). | DOI | MR | Zbl

[8] Johnson, J., Wolfe, J.: On the norm of the canonical projection of {$E^{***}$} onto {$E^{\perp}$}. Proc. Amer. Math. Soc. 75 (1979), 50-52. | DOI | MR | Zbl

[9] Kalton, N. J.: Locally complemented subspaces and ${\cal L}_p$-spaces for $0. Math. Nachr. 115 (1984), 71-97. DOI 10.1002/mana.19841150107 | MR 0755269

[10] Lima, V.: The weak metric approximation property and ideals of operators. J. Math. Anal. A. 334 (2007), 593-603. | DOI | MR | Zbl

[11] Lima, V., Lima, A.: Geometry of spaces of compact operators. Arkiv für Matematik 46 (2008), 113-142. | DOI | MR | Zbl

[12] Lima, V., Lima, A.: Ideals of operators and the metric approximation property. J. Funct. Anal. 210 (2004), 148-170. | DOI | MR | Zbl

[13] Lima, A.: Intersection properties of balls and subspaces in {Banach} spaces. Trans. Amer. Math. Soc. 227 (1977), 1-62. | DOI | MR | Zbl

[14] Lima, A.: The metric approximation property, norm-one projections and intersection properties of balls. Israel J. Math. 84 (1993), 451-475. | DOI | MR | Zbl

[15] Lima, A.: Property {$(wM^*)$} and the unconditional metric compact approximation property. Studia Math. 113 (1995), 249-263. | DOI | MR | Zbl

[16] Lima, A., Nygaard, O., Oja, E.: Isometric factorization of weakly compact operators and the approximation property. Israel J. Math. 119 (2000), 325-348. | DOI | MR | Zbl

[17] Lima, A., Oja, E.: Ideals of finite rank operators, intersection properties of balls, and the approximation property. Studia Math. 133 (1999), 175-186. | MR | Zbl

[18] Lima, A., Oja, E.: Hahn-Banach extension operators and spaces of operators. Proc. Amer. Math. Soc. 130 (2002), 3631-3640 (electronic). | DOI | MR | Zbl

[19] Lima, A., Oja, E.: Ideals of compact operators. J. Aust. Math. Soc. 77 (2004), 91-110. | DOI | MR | Zbl

[20] Lima, A., Oja, E.: Ideals of operators, approximability in the strong operator topology, and the approximation property. Michigan Math. J. 52 (2004), 253-265. | DOI | MR | Zbl

[21] Lima, A., Oja, E.: The weak metric approximation property. Math. Ann. 333 (2005), 471-484. | DOI | MR | Zbl

[22] Lima, A., Oja, E., Rao, T. S. S. R. K., Werner, D.: Geometry of operator spaces. Michigan Math. J. 41 (1994), 473-490. | DOI | MR | Zbl

[23] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I. Springer, Berlin-Heidelberg-New York (1977). | MR | Zbl

[24] Oja, E.: Uniqueness of the extension of linear continuous functionals according to the Hahn-Banach theorem. Eesti NSV Tead. Akad. Toimetised Füüs.-Mat. 33 (1984), 424-438, 473 Russian. | MR

[25] Oja, E.: Strong uniqueness of the extension of linear continuous functionals according to the Hahn-Banach theorem. Mat. Zametki 43 (1988), 237-246, 302 Russian; English translation in Math. Notes 43 (1988), 134-139. | MR

[26] Oja, E.: Dual de l'espace des opérateurs linéaires continus. C. R. Acad. Sc. Paris, Sér. A 309 (1989), 983-986. | MR | Zbl

[27] Oja, E.: Extension of functionals and the structure of the space of continuous linear operators. Tartu. Gos. Univ., Tartu (1991), Russian. | MR | Zbl

[28] Oja, E.: $HB$-subspaces and Godun sets of subspaces in Banach spaces. Mathematika 44 (1997), 120-132. | DOI | MR | Zbl

[29] Oja, E.: Geometry of Banach spaces having shrinking approximations of the identity. Trans. Amer. Math. Soc. 352 (2000), 2801-2823. | DOI | MR | Zbl

[30] Oja, E.: Operators that are nuclear whenever they are nuclear for a larger range space. Proc. Edinb. Math. Soc. 47 (2004), 679-694. | DOI | MR | Zbl

[31] Oja, E.: The impact of the Radon-Nikodým property on the weak bounded approximation property. Rev. R. Acad. Cien. Serie A. Mat. 100 (2006), 325-331. | MR | Zbl