A measure-theoretic characterization of the Henstock-Kurzweil integral revisited
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1221-1231
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper we show that the measure generated by the indefinite Henstock-Kurzweil integral is $F_{\sigma \delta }$ regular. As a result, we give a shorter proof of the measure-theoretic characterization of the Henstock-Kurzweil integral.
In this paper we show that the measure generated by the indefinite Henstock-Kurzweil integral is $F_{\sigma \delta }$ regular. As a result, we give a shorter proof of the measure-theoretic characterization of the Henstock-Kurzweil integral.
@article{CMJ_2008_58_4_a25,
author = {Lee, Tuo-Yeong},
title = {A measure-theoretic characterization of the {Henstock-Kurzweil} integral revisited},
journal = {Czechoslovak Mathematical Journal},
pages = {1221--1231},
year = {2008},
volume = {58},
number = {4},
mrnumber = {2471178},
zbl = {1174.26005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a25/}
}
Lee, Tuo-Yeong. A measure-theoretic characterization of the Henstock-Kurzweil integral revisited. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1221-1231. http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a25/