A measure-theoretic characterization of the Henstock-Kurzweil integral revisited
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1221-1231 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we show that the measure generated by the indefinite Henstock-Kurzweil integral is $F_{\sigma \delta }$ regular. As a result, we give a shorter proof of the measure-theoretic characterization of the Henstock-Kurzweil integral.
In this paper we show that the measure generated by the indefinite Henstock-Kurzweil integral is $F_{\sigma \delta }$ regular. As a result, we give a shorter proof of the measure-theoretic characterization of the Henstock-Kurzweil integral.
Classification : 26A39
Keywords: Henstock variational measure; Henstock-Kurzweil integral
@article{CMJ_2008_58_4_a25,
     author = {Lee, Tuo-Yeong},
     title = {A measure-theoretic characterization of the {Henstock-Kurzweil} integral revisited},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1221--1231},
     year = {2008},
     volume = {58},
     number = {4},
     mrnumber = {2471178},
     zbl = {1174.26005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a25/}
}
TY  - JOUR
AU  - Lee, Tuo-Yeong
TI  - A measure-theoretic characterization of the Henstock-Kurzweil integral revisited
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 1221
EP  - 1231
VL  - 58
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a25/
LA  - en
ID  - CMJ_2008_58_4_a25
ER  - 
%0 Journal Article
%A Lee, Tuo-Yeong
%T A measure-theoretic characterization of the Henstock-Kurzweil integral revisited
%J Czechoslovak Mathematical Journal
%D 2008
%P 1221-1231
%V 58
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a25/
%G en
%F CMJ_2008_58_4_a25
Lee, Tuo-Yeong. A measure-theoretic characterization of the Henstock-Kurzweil integral revisited. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1221-1231. http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a25/

[1] Bongiorno, D., Piazza, L. Di, Skvortsov, V. A.: Variational measures related to local systems and the ward property of ${\cal P}$-adic path bases. Czech. Math. J. 56 (2006), 559-578. | DOI | MR | Zbl

[2] Piazza, L. Di: Variational measures in the theory of the integration in ${\mathbb R}^m$. Czech. Math. J. 51 (2001), 95-110. | DOI | MR

[3] Faure, Claude-Alain: A descriptive definition of some multidimensional gauge integrals. Czech. Math. J. 45 (1995), 549-562. | MR | Zbl

[4] Henstock, R., Muldowney, P., Skvortsov, V. A.: Partitioning infinite-dimensional spaces for generalized Riemann integration. Bull. London Math. Soc. 38 (2006), 795-803. | DOI | MR | Zbl

[5] Kurzweil, J., Jarník, J.: Differentiability and integrability in $n$ dimensions with respect to $\alpha$-regular intervals. Results Math. 21 (1992), 138-151. | DOI | MR

[6] Tuo-Yeong, Lee: A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space. Proc. London Math. Soc. 87 (2003), 677-700. | MR

[7] Tuo-Yeong, Lee: Product variational measures and Fubini-Tonelli type theorems for the Henstock-Kurzweil integral. J. Math. Anal. Appl. 298 (2004), 677-692. | DOI | MR

[8] Tuo-Yeong, Lee: A characterisation of multipliers for the Henstock-Kurzweil integral. Math. Proc. Cambridge Philos. Soc. 138 (2005), 487-492. | DOI | MR

[9] Tuo-Yeong, Lee: The Henstock variational measure, Baire functions and a problem of Henstock. Rocky Mountain J. Math 35 (2005), 1981-1997. | DOI | MR

[10] Tuo-Yeong, Lee: Some full descriptive characterizations of the Henstock-Kurzweil integral in the Euclidean space. Czech. Math. J. 55 (2005), 625-637. | DOI | MR

[11] Tuo-Yeong, Lee: Product variational measures and Fubini-Tonelli type theorems for the Henstock-Kurzweil integral II. J. Math. Anal. Appl. 323 (2006), 741-745. | DOI | MR

[12] Thomson, B. S.: Derivates of interval functions. Mem. Amer. Math. Soc. 93 (1991). | MR | Zbl

[13] Ward, A. J.: On the derivation of additive interval functions of intervals in $m$-dimensional space. Fund. Math. 28 (1937), 265-279.