Convergence theorems for the Birkhoff integral
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1207-1219 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give sufficient conditions for the interchange of the operations of limit and the Birkhoff integral for a sequence $(f_n)$ of functions from a measure space to a Banach space. In one result the equi-integrability of $f_n$'s is involved and we assume $f_n\to f$ almost everywhere. The other result resembles the Lebesgue dominated convergence theorem where the almost uniform convergence of $(f_n)$ to $f$ is assumed.
We give sufficient conditions for the interchange of the operations of limit and the Birkhoff integral for a sequence $(f_n)$ of functions from a measure space to a Banach space. In one result the equi-integrability of $f_n$'s is involved and we assume $f_n\to f$ almost everywhere. The other result resembles the Lebesgue dominated convergence theorem where the almost uniform convergence of $(f_n)$ to $f$ is assumed.
Classification : 28B05, 46G10
Keywords: Birkhoff integral; convergence theorems; vector valued functions
@article{CMJ_2008_58_4_a24,
     author = {Balcerzak, Marek and Potyra{\l}a, Monika},
     title = {Convergence theorems for the {Birkhoff} integral},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1207--1219},
     year = {2008},
     volume = {58},
     number = {4},
     mrnumber = {2471177},
     zbl = {1174.28011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a24/}
}
TY  - JOUR
AU  - Balcerzak, Marek
AU  - Potyrała, Monika
TI  - Convergence theorems for the Birkhoff integral
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 1207
EP  - 1219
VL  - 58
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a24/
LA  - en
ID  - CMJ_2008_58_4_a24
ER  - 
%0 Journal Article
%A Balcerzak, Marek
%A Potyrała, Monika
%T Convergence theorems for the Birkhoff integral
%J Czechoslovak Mathematical Journal
%D 2008
%P 1207-1219
%V 58
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a24/
%G en
%F CMJ_2008_58_4_a24
Balcerzak, Marek; Potyrała, Monika. Convergence theorems for the Birkhoff integral. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1207-1219. http://geodesic.mathdoc.fr/item/CMJ_2008_58_4_a24/

[1] Birkhoff, G.: Integration of functions with values in a Banach space. Trans. Amer. Math. Soc. 38 (1935), 357-378. | MR | Zbl

[2] Cascales, B., Rodríguez, J.: The Birkhoff integral and the property of Bourgain. Math. Ann. 331 (2005), 259-279. | DOI | MR

[3] J. Diestel, J. J. Uhl., Jr.: Vector measures. Math. Surveys, 15, Amer. Math. Soc., Providence, Rhode Island (1977). | MR | Zbl

[4] Fremlin, D. H.: The McShane and Birkhoff integrals of vector-valued functions. University of Essex, Mathematics Department Reaearch, 1999, Report 92-10, available at http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm

[5] Hille, E., Phillips, R.: Functional Analysis and Semi-Groups. Colloquium Publications, 31, Amer. Math. Soc., Providence, Rhode Island (1957). | MR

[6] Kadets, V. M., Shumyatskiy, B., Shvidkoy, R., Tseytlin, L., Zheltukhin, K.: Some remarks on vector-valued integration. Mat. Fiz. Anal. Geom. 9 (2002), 48-65. | MR | Zbl

[7] Kadets, V. M., Tseytlin, L. M.: On `integration' of non-integrable vector-valued functions. Mat. Fiz. Anal. Geom. 7 (2000), 49-65. | MR | Zbl

[8] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I, Sequence Spaces. Springer-Verlag, Berlin, Heidelberg, New York (1977). | MR | Zbl

[9] Marraffa, V.: A characterization of absolutely summing operators by means of McShane integrable functions. J. Math. Anal. Appl. 293 (2004), 71-78. | DOI | MR | Zbl

[10] Potyrała, M.: Some remarks about Birkhoff and Riemann-Lebesgue integrability of vector valued functions. Tatra Mt. Math. Publ. 35 (2007), 97-106. | MR

[11] Potyrała, M.: The Birkhoff and variational McShane integrals of vector valued functions. Folia Mathematica, Acta Universitatis Lodziensis 13 (2006), 31-40. | MR

[12] Rodríguez, J.: On the existence of Pettis integrable functions which are not Birkhoff integrable. Proc. Amer. Math. Soc. 133 (2005), 1157-1163. | DOI | MR

[13] Rodríguez, J.: On integration of vector functions with respect to vector measures. Czech. Math. J. 56 (2006), 805-825. | DOI | MR

[14] Schwabik, Š., Guoju, Ye: Topics in Banach Space Integration. Series in Real Analysis, 10, World Scientific, Singapore (2005). | MR